(35.175.212.130) 您好!臺灣時間:2021/05/15 10:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉醇炫
研究生(外文):Chun-Hsuan Liu
論文名稱:針對嚴格回授非線性不確定系統輔以觀察器之強健適應模糊控制器
論文名稱(外文):OBSERVER-BASED ROBUST ADAPTIVE FUZZY CONTROLLER FOR STRICT-FEEDBACK NONLINEAR UNCERTAIN SYSTEMS
指導教授:江江盛
指導教授(外文):Chiang-Cheng Chiang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:50
中文關鍵詞:追蹤誤差不確定性強健適應模糊控制器狀態濾波器模糊邏輯系統高增益觀察器適應法則滑動模式控制嚴格回授非線性系統李亞普諾夫穩定定理
外文關鍵詞:uncertaintiestracking errorstrict-feedback nonlinear systemssliding mode controlhigh-gain observeradaptive lawsfuzzy logic systemsstate variable filtersrobust adaptive fuzzy controllerLyapunov stability theorem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對具有不確定項之單輸入單輸出嚴格回授非線性不確定系統之追蹤控制問題,提出一套輔以觀測器之強健適應模糊滑動模式控制器的運算法則。運用李氏微分來轉換此非線性系統的動態方程式到所對應的等效系統。因為所有原來系統中的狀態是無法直接獲得的,所以本論文利用高增益觀察器來估測等效系統的狀態。進而,使用模糊邏輯系統及一些適應法則來近似未知的非線性函數以及不確定項的未知上界。藉由李亞普諾夫穩定理論,所提出的強健適應模糊滑動控制器可以達到整個閉迴路系統之漸近穩定性及良好的輸出追蹤性能。最後,本論文將舉出兩個例題及電腦模擬的結果,來證明所提出控制器方法的有效性。
An observer-based robust adaptive fuzzy sliding mode control algorithm is proposed in this thesis for the tracking control problem of a class of single-input single-output (SISO) strict-feedback nonlinear uncertain systems in the presence of uncertainties. The original nonlinear system dynamics can be transformed into an equivalent system by means of the concept of Lie derivative. Because all the states of the original nonlinear systems are not available for measurement, the high-gain observer is applied for estimating all states in the equivalent system. Moreover, fuzzy logic systems and some adaptive laws are used to approximate unknown nonlinear functions and the unknown bounds of uncertainties. Based on the Lyapunov stability theorem, the proposed robust adaptive fuzzy sliding mode controller can achieve the asymptotic stabilization and the output tracking performance of the whole closed-loop system. Finally, two examples and simulation results are illustrated to show the effectiveness of the proposed control scheme.
ACKNOWLEDGEMENTS I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE III
TABLE OF CONTENTS IV
LIST OF FIGURES V
CHAPTER
1 INTRODUCTION 1
2 PROBLEM FORMULATION AND FUZZY LOGIC SYSTEMS 4
2.1 Problem Formulation 4
2.2 Description of Fuzzy Logic Systems 9
3 OBSERVER-BASED ROBUST ADAPTIVE FUZZY SLIDING MODE CONTROLLER DESIGN AND STABILITY ANALYSIS 11
4 RESULTS OF SIMULATION 27
4.1 Pendulum System With Motor 27
4.1.1 Robust Adaptive Fuzzy Sliding Mode Control Approach 28
4.2 An Inverted Pendulum System 37
4.2.1 Robust Adaptive Fuzzy Sliding Mode Control Approach 38
5 CONCLUSION 45
REFERENCES 46
[1]Z. Gong, C. Wen, and D. P. Mital, “Decentralized robust controller design for a class of interconnected uncertain system: with unknown bound of uncertainty,” IEEE Trans. Automat. Contr., vol. 41, pp. 850-854, 1996.
[2]K. C. Hsu, “Variable structure control design for uncertain dynamic systems with sector nonlinearities,” Automatica, vol. 34, pp. 505-508, 1998.
[3]W. J. Cao and J. X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Trans. on Automat. Contr., vol. 49, no. 8, pp. 1355-1360, 2004.
[4]X. G. Yan and L. H. Xie, “Reduced-order control for a class of nonlinear similar interconnected systems with mismatched uncertainty,” Automatica, vol. 39, pp. 91-99, 2003.
[5]W. M. Haddad, T. Hayakawa, and V. S. Chellaboina, “Robust adaptive control for nonlinear uncertain systems,” Automatica, vol. 39, pp. 551-556, 2003.
[6]Y. S. Yang, G. Feng and J. S. Ren, “A Combined Backstepping and Small-Gain Approach to Robust Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 34, no. 3, pp. 406-420, 2004.
[7]B. Chen, X. P. Liu and S. C. Tong, “Adaptive Fuzzy Output Tracking Control of MIMO Nonlinear Uncertain Systems,” IEEE Trans. On Fuzzy Syst, vol. 15, no. 2, pp. 287-300, 2007.
[8]Y. S. Yang and C. G. Zhou, “Adaptive Fuzzy Stabilization for Strict-Feedback Canonical Nonlinear Systems Via Backstepping and Small-Gain Approach,” IEEE Trans. on Fuzzy Syst, vol. 13, no. 1, pp. 104-114, 2005.
[9]J. H. Park, C. J. Moon, S. H. Kim, J. Lee, and S. Y. So, “Globally Stable Adaptive Fuzzy Control for Strict-feedback Nonlinear Systems,” IEEE Internat. Conf. on Industrial Technology, pp. 1127-1131, 2006.
[10]A. Isidori, Nonlinear control systems: An Introduction. New York: Springer-Verlag, 1989.
[11]L. Zadeh, ‘‘Fuzzy sets’’, Inform. Control 8 (1965) 338-353.
[12]Y. C. Chang, ‘‘Robust tracking control for nonlinear MIMO systems via fuzzy approaches,’’ Automatica, vol. 36, pp. 1535-1545, 2000.
[13]R. P. Leland, “Feedback Linearization Control Design for Systems with Fuzzy Uncertainty,” IEEE Trans. on Fuzzy Syst., vol. 6, no. 4, pp. 492-503, 1998.
[14]H. J. Kang, C. Kwon, H. Lee, and M. Park, “Robust Stability Analysis and Design Method for the Fuzzy Feedback Linearization Regulator,” IEEE Trans. on Fuzzy Syst., vol. 6, no. 4, pp. 464-472, 1998.
[15]H. J. Lee, J. B. Park and G. Chen, “Robust Fuzzy Control of Nonlinear Systems with Parametric Uncertainties,” IEEE Trans. on Fuzzy Syst., vol. 9, no. 2,pp. 369-379, 2001.
[16]B. S. Chen, C. H. Lee and Y. C. Chang, “ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach,” IEEE Trans. on Fuzzy Syst., vol. 4, no. 12, pp. 32-43, 1996.
[17]B. K. Yoo and W. C. Ham, “Adaptive Control of Robot Manipulator Using Fuzzy Compensator,” IEEE Trans. on Fuzzy Syst., vol. 8, no. 2, pp. 186-199, 2000.
[18]S. S. Hu and Y. Liu, “Robust control of multiple time-delay uncertain nonlinear system using fuzzy model and adaptive neural network,” Fuzzy sets and Syst., 146, pp. 403-420, 2004.
[19]J. H. Park, G. T. Park, S. H. Kim, and C. J. M, “Output-feedback control of uncertain nonlinear systems using a self-structuring adaptive fuzzy observer,” Fuzzy sets and Syst., vol. 151, pp. 21–42, 2005.
[20]T. C. Lin, C. H. Wang and H. L. Liu, “Observer-based indirect adaptive fuzzy-neural tracking control for nonlinear SISO systems using VSS and approaches,” Fuzzy sets and Syst., vol. 143, pp. 211–232, 2004.
[21]F. C. Lin and S. M. Yang, “Adaptive fuzzy logic-based velocity observer for servo motor drives,” Mechatronics, vol. 13, pp.229-241, 2003.
[22]C. C. Kung and T. H. Chen, “Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems,” Fuzzy Sets and Systems, vol. 155, pp. 292-308, 2005.
[23]S. Tong, H. X. Li, and W. Wang, “Observer-based adaptive fuzzy control for SISO nonlinear systems,” Fuzzy Sets and Systems, vol. 148, pp. 355-376, 2004.
[24]C. H. Wang, H. L. Liu, and T. C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Trans. Fuzzy Systems, vol. 10, pp. 39-49, 2002.
[25]Y. G. Leu, T. T. Lee, and W. Y. Wang, “Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems,” IEEE Trans. Syst. Man. Cybern., vol. 29, pp. 585-591, 1999.
[26]H. K. Khalil, NONLINEAR SYSTEMS. Prentice-Hall, Upper Saddle River, NJ, 2002.
[27]S. G. OH and H. K. Khalil, “Nonlinear Output-Feedback Tracking Using High-gain Observer and Variable Structure Control,” Automatica, vol. 33, pp. 1845-1856, 1997.
[28]J. A. Heredia and W. Yu, “A High-Gain Observer-Based PD Control for Robot Manipulator,” Proceedings of the American Control Conference, pp. 2518-2522, 2000.
[29]T. C. Hsia, System Identification: Least-squares Methods, Lexington Books, Lexington, MA, 1977.
[30]C. W. Tao, M. L. Chan, and W. Y. Wang, “Sliding control for linear uncertain systems,” Proc. IEEE Conf. on Robotics and Automation, pp. 2611-2615, 2003.
[31]Y. D. Pan, K. S. Furuta, S. H. Hatakeyama, and S. O. Suzuki, “Design of sliding mode for chattering-free variable structure control,” American Control Conf. vol. 2, pp. 1528-1532, 1995.
[32]M. B. Ghalia and A.T. Alouani, “Sliding mode control synthesis using fuzzy logic,” American Control Conf. vol. 2, pp. 1528-1532, 1995.
[33]H. J. Lee, E. T. Kim, H. J. Kang, and M. N. Park, “Design of a sliding mode controller with fuzzy sliding surfaces,” Proc. IEE Control Theory, vol. 145, no. 5, pp. 411-418, 1998.
[34]S. D. Brierley and R. Longchamp, “Application of sliding-mode control to air-air interception problem,” IEEE Trans. on Aero Space and Electronic Syst., vol. AES-26, no. 2, pp. 306-325, 1990.
[35]R. Gupta and A. Ghosh, “Frequency-domain characterization of sliding mode control of an inverter used in DSTATCOM application,” IEEE Trans. on Circuits and Systems, vol. 5, no. 3, pp. 416-421, 2006.
[36]G. Bartolini, “Sliding mode control of an underwater robotic manipulator,” Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, pp. 2983-2988, 2000.
[37]J. J. Slotine and S. S. Sastry, “Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators,” Int. J. Control, vol. 38, no. 2, pp. 465-492, 1982.
[38]J. Y. Hung and R. M. Nelms, “Using a Boundary Layer Technique to Reduce Chatter in Sliding Mode controllers,” Proc. IEEE Applied Power Electronics Conference and Exhibition, pp. 195-201, 1991.
[39]L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Trans. on Fuzzy Syst., vol. 1, no. 2, pp. 146–155, 1993.
[40]L. X. Wang, Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs, NJ, 1994.
[41]A. Wu and P. K. S. Tam, “Stable fuzzy neural tracking control of unknown nonlinear dynamical systems based on fuzzy hierarchy error approach,” IEEE Trans. Fuzzy Systems, vol. 10, pp. 779-789, 2002.
[42]C. M. Kwan, “Sliding mode control of linear systems with mismatched
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊