跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威宇
研究生(外文):Wei-Yu Chen
論文名稱:輔以截止區補償具有未知截止區的非線性不確定系統之強健適應模糊控制
論文名稱(外文):ROBUST ADAPTIVE FUZZY CONTROL OF NONLINEAR UNCERTAIN SYSTEMS WITH AN UNKNOWN DEADZONE USING DEADZONE COMPENSATION
指導教授:江江盛
指導教授(外文):Chiang-Cheng Chiang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:44
中文關鍵詞:未匹配不確定性非線性系統截止區補償模糊邏輯系統適應法則
外文關鍵詞:unmatched uncertaintiesfuzzy logic systemsdeadzone compensationnonlinear systemsadaptive laws
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中針對一些具有未知截止區的非線性不確定系統,設計出一輔以截止區補償的強健適應模糊控制器。截止區的特徵在致動器中是相當容易發生的,例如直流伺服馬達系統、壓電轉換器、醫用機器人及工具機械。但是,在這些例子的截止區通常欠缺完整的了解,而且可能會嚴格地限制控制的效能。因此,控制器除了要去處理系統中不確定性的強健性,同時也需要去適應那未知截止區的不確定性。 本論文藉由使用截止區的補償,以及從直覺上和數學上去探討這截止區模型的特性,一個強健適應模糊控制法則在不需要去建構截止區的反函數下被提出。基於李亞普諾夫穩定定理,所提出的控制器不僅可以確保系統在具有未知截止區的情況下之強健穩定度,而且也可以獲得良好的追蹤性能。最後,本論文將舉出兩個例題及電腦模擬的結果,來證明所提出的強健適應模糊控制器之有效性及效能。
In this thesis, a robust adaptive fuzzy control scheme with using deadzone compensation is designed for a class of nonlinear uncertain systems preceded by an unknown deadzone. Deadzone characteristics are quite commonly encountered in actuators, such as DC servo system, piezoelectric transducer, medical robot, and machine tools. However, deadzones in the above-mentioned systems are usually poorly known and may severely limit the performance of control. Therefore, controllers are required to deal with the robust stability of the system in the presence of uncertainties, and also need to adapt the unknown deadzone uncertainties. By using deadzone compensation and exploring the properties of this deadzone model intuitively and mathematically, this thesis presents a robust adaptive fuzzy control scheme without constructing the deadzone inverse. Based on Lyapunov stability theorem, the proposed controller can not only guarantee the robust stability of the whole closed-loop system with an unknown deadzone, but also obtain good tracking performance. Finally, two examples and simulation results are provided to demonstrate the effectiveness and performance of the proposed method.
TABLES OF CONTENTS

ACKNOWLEDGEMENTS I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE) III
TABLE OF CONTENTS IV
LIST OF FIGURES V
CHAPTER
1 INTRODUCTION 1
2 PROBLEM STATEMENT AND PRELIMINARIES 4
2.1 Problem Statement 4
2.2 Description of Fuzzy Logic Systems 10
3 CONTROLLER DESIGN AND STABILITY ANALYSIS 12
3.1 Robust Adaptive Fuzzy Control 13
4 RESULTS OF SIMULATION 25
4.1 A Second-Order Nonlinear System 25
4.1.1 Robust Adaptive Fuzzy Control Approach 26
4.2 A DC servo System 33
4.2.1 Robust Adaptive Fuzzy Control Approach 34
5 CONCLUSION 41
REFERENCES 42
[1] J. H. Kim, J. H. Park, S. W. Lee, and E. K. P. Chong, “A two layered fuzzy logic controller for systems with deadzones,” IEEE Trans. Ind. Electron., vol. 41, pp. 155-162, 1994.
[2] T. Hu and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design. Boston, MA: Birkhäuser, 2001.
[3] C. A. Sacher and G. F. Inbar, “Tracking of the muscle recruitment characteristic during adaptive control of the electrically stimulated knee,” Proc. Ann. Int. Conf. IEEE Engineering in Medicine and Biology Soc., vol. 12, no. 5, pp. 2315-2115, 1990.
[4] W. Zhonghua, Y. Bo, C. Lin and Z. Shusheng, “Robust adaptive deadzone compensation of DC servo system, ” IEE Proc.-Control Theory Appl., vol. 153, no. 6, pp. 709-713, 2006.
[5] A. Isidori, Nonlinear control systems: An Introduction. New York: Springer-Verlag, 1989.
[6] Z. Gong, C. Wen, and D. P. Mital, “Decentralized robust controller design for a class of interconnected uncertain system: with unknown bound of uncertainty,” IEEE Trans. Automat. Contr., vol. 41, pp. 850-854, 1996.
[7] K. C. Hsu, “Variable structure control design for uncertain dynamic systems with sector nonlinearities,” Automatica, vol. 34, pp. 505-508, 1998.
[8] Y. Hashimoto, H. Wu, and K. Mizukami, “Exponentially robust output tracking of SISO nonlinear systems with uncertainties,” Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 2077-2082, 1996.
[9] T. L. Liao, L. C. Fu, and C. F. Hsu, “Adaptive robust tracking of nonlinear systems and with an application to a robotic manipulator,” Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, pp. 3130-3131, 1990.
[10] W. J. Cao and J. X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Trans. on Automat. Contr., vol. 49, no. 8, pp. 1355-1360, 2004.
[11] F. Castanos and L. Fridman, “Analysis and design of integral sliding manifolds for systems with unmatched perturbations,” IEEE Trans. on Automat. Contr., vol. 51, no. 5, pp. 853-858, 2006.
[12] H. S. Wu, “Adaptive robust state feedback controllers for a class of dynamical systems with delayed state perturbations,” Proceedings of the American Control Conference, Chicago, Illinois, pp.3661-3665, June 2000.
[13] S. Labiod, M. S. Boucherit, and T. M. Guerra, “Adaptive fuzzy control of a class of MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 151, pp. 59-77, 2005.
[14] S. Tong, H. X. Li, and W. Wang, “Observer-based adaptive fuzzy control for SISO nonlinear systems,” Fuzzy Sets and Systems, vol. 148, pp. 355-376, 2004.
[15] J. H. Park, S. J. Seo, and G. T. Park, “Robust adaptive controller for nonlinear system using estimation of bounds for approximation errors,” Fuzzy Sets and Systems, vol. 133, pp. 19-36, 2003.afncwsoscunds
[16] C. H. Wang, H. L. Liu, and T. C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 1, pp. 39-49, 2002.
[17] Y. C. Chang, “Adaptive fuzzy-based tracking control for nonlinear siso systems via vss and approaches,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 278-292, 2001.
[18] Y. T. Kim and Z. Z. Bien, “Robust adaptive fuzzy control in the presence of external disturbance and approximation error,” Fuzzy Sets and Systems, vol. 148, pp. 377-393, 2004.
[19] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 146-155, 1993.
[20] L. X. Wang, Adaptive fuzzy systems and control: Design and Stability, Prentice-Hill, Englewood Cliffs, NJ, 1994.
[21] J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding model control: Part I: fuzzy switching,” Fuzzy Sets and Systems, vol. 122, pp. 21-30, 2001.
[22] P. T. Chan, A. B. Rad, and J. Wang, “Indirect adaptive fuzzy sliding mode control: Part II: parameter projection and supervisory control,” Fuzzy Sets and Systems, vol. 122, pp. 31-43, 2004.
[23] G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown dead-zones,” IEEE Trans. Autom. Control, vol. 39, no. 1, pp. 59-68, 1994.
[24] E. W. Bai and H. Cho, “Semi-Global convergence results on control of systems containing a Dead Zone by an Adaptive Dead Zone Inverse,” American Control Conference. vol. 13, pp. 2044 – 2048, 1995.
[25] M. Tian, G. Tao, and Y. Ling, “Adaptive dead-zone inverse for nonlinear plants,” Proceedings of the 35th Conference on Decision and Control, vol. 4, pp. 4381-4386, 1996.
[26] F. L. Lewis, W. K. Tim, L. Z. Wang, and Z. X. Li “Deadzone compensation in motion control systems using adaptive fuzzy logic control, ” IEEE Trans. Control Syst. Technol., vol. 7, no. 6, pp. 731 – 742, 1999.
[27] J. O. Jang, “A deadzone compensator of dc motor system using fuzzy logic control, ” IEEE Trans. on Sys., Man Cyber. C: Appl. and Rev., vol. 31, no. 1, pp. 42-48, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 多變量非線性不確定系統在輸出延遲下之強健適應模糊輸出回授控制
2. 針對嚴格回授非線性不確定系統輔以觀察器之強健適應模糊控制器
3. 針對具有時間延遲及飽和輸入的切換不確定欠驅動系統之參考模型適應模糊控制
4. 欠驅動系統的強健觀察器為基礎之增量滑動模式控制
5. 針對具有滑動扇形多輸入多輸出非線性雙旋轉翼系統之適應強健控制設計
6. 輔以模糊模型不確定非線性時間延遲系統之強健滑動模式控制器設計
7. 具有飽和輸入的不確定時間延遲大型系統之分散式輸出回授追蹤控制
8. 基於干擾觀察器具有輸入飽和的非線性系統之直接適應模糊控制
9. 基於觀察器針對具有飽和輸入的嚴格回授不確定非線性系統之參考模型滑動模式控制方法
10. 針對具有飽和輸入的切換不確定非線性系統之適應模糊輸出回授滑動模式控制
11. 針對具有截止區輸入的切換不確定性非線性系統輔以觀察器之適應模糊滑動模式控制
12. 針對具有時間延遲及飽和輸入的不確定欠驅動系統之觀察器為基礎的階層滑動模式控制方法
13. 針對具有時間延遲和截止區輸入的不確定性欠驅動系統之適應參考模型階層滑動模式控制
14. 針對具有時間延遲的不確定性欠驅動系統之參考模型滑動模式控制
15. 針對具有時間延遲不確定欠驅動非線性之觀察器為基礎的模糊滑動模式控制方法