(3.235.191.87) 您好!臺灣時間:2021/05/13 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:柯凱智
研究生(外文):Kai-Chih Ko
論文名稱:針對T-S模糊雙線性系統之間接適應控制設計
論文名稱(外文):INDIRECT ADAPTIVE CONTROL DESIGN FOR A CLASS OF T-S FUZZY BILINEAR SYSTEMS
指導教授:龔宗鈞
指導教授(外文):Chung-Chun Kung
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:42
中文關鍵詞:雙線性系統適應控制模糊控制模糊模型線上估測
外文關鍵詞:bilinear systemadaptive controlfuzzy controlfuzzy modelonline estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,對於某一類的非線性系統提出一個間接適應模糊控制的架構。Takagi-Sugeno 模糊雙線性模型用於描述一個非線性系統,而當中的模糊模型與系統參數是經由模糊規則和線上更新並根據李亞普諾夫穩定性定理來獲得。本文希望設計ㄧ適應模糊控制器以及參數更新法則,透過T-S模糊雙線性模型和間接適應模糊控制的穩定準則,能夠使輸出可以追蹤到所設計出的期望參考輸入。我們將以一個數值的模擬來驗證本文所提出之設計法則的成效。而模擬的例子可以用來驗證本文所提出的方法正確定及結果。
In this paper, an indirect adaptive fuzzy control scheme for a class of nonlinear systems is proposed. The Takagi-Sugeno (T-S) fuzzy bilinear model is used for representing a nonlinear system, where the parameters of the fuzzy model are obtained both from the fuzzy rules and online updating according to Lyapunov stability theorem. The control objective is to design adaptive fuzzy controller and adaptive laws such that the overall T-S fuzzy bilinear model based indirect adaptive fuzzy control system is stabilized and the output is forced to follow the desired reference input. A numerical example is used to illustrate the effectiveness of the proposed method. The simulation can prove the validity of the proposed scheme and achieve satisfy simulation results.
ACKNOWLEDGEMENTS I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE) III
TABLE OF CONTENTS IV
LIST OF FIGURES V
CHAPTER
1 INTRODUCTION 1
2 PROBLEM FORMULATION 4
2.1 Parameter Estimator Design 5
2.2 Adaptive Fuzzy Controller Design 6
3 ANALYSIS OF SYSTEM STABILITY 10
4 SIMULATION RESULTS 16
5 CONCLUSION 31
REFERENCES 32
[1]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.
[2]M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets Syst., vol. 28, no. 1, pp. 15–33, Oct. 1988.
[3]K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, control theory and linear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1–13, Feb. 1996.
[4]M. Akar and U. Ozguner, “Stability and stabilization of Takagi–Sugeno fuzzy systems,” in Proc. IEEE Conf. Decision and Control, 1999, pp. 4840–4845.
[5]R. R. Mohler, Nonlinear Systems: Vol. 2 Application to Bilinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[6]R. R. Mohler, Bilinear Control Processes. New York: Academic, 1973.
[7]E. P. Ryan and N. J. Buckingham, “On asymptotically stabilizing feedback control of bilinear systems,” IEEE Trans. Autom. Control, vol. AC-28, no. 8, pp. 863–864, Aug. 1983.
[8]R. Longchamp, “Stable feedback control of bilinear systems,” IEEE Trans. Automat. Contr., vol. AC-25, no. 1, pp. 37–45, Apr. 1980.
[9]J.-S. Chiou, F.-C.Kung, and T.-H. S. Li, “Robust stabilization of a class of singularly perturbed discrete bilinear systems,” IEEE Trans. Autom. Control, vol. 45, no. 6, pp. 1187–1190, Jun. 2000.
[10]D. L. Elliott, Bilinear Systems in Encyclopedia of Electrical Engineering. New York: Wiley, 1999.
[11]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.
[12]B. S. Chen, C. S. Tseng, and H. J. Uang, “Fuzzy tracking control design for nonlinear dynamic system via T–S fuzzy model,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381–392, Jun. 2001.
[13]K. Kiriakidis, A. Grivas, and A. Tzes, “A sufficient criterion for stability of the Takagi-Sugeno fuzzy model,” in Proc. 5th IEEE Int. Conf. Fuzzy Syst., New Orleans, LA, Sep. 1996, pp. 265–271.
[14]K. Tanaka, T. Ikeda, and H. O.Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1–13, Feb. 1996.
[15]B. Chen, X. Liu, and S. Tong, “Adaptive Fuzzy Input Tracking Control of MIMO Nonlinear Uncertain Systems,” IEEE Trans. Fuzzy Syst., vol. 15 no.2, pp. 287-294, 2007.
[16]H. X. Li and S. Tong, “A Hybrid Adaptive Fuzzy Control for a Class of Nonlinear MIMO Systems,” IEEE Trans. Fuzzy Syst., vol. 11 no.1, pp. 24-34, 2003.
[17]E. Kim, “Output Feedback Tracking Control of Robot Manipulators with Model Uncertainty via Adaptive Fuzzy Logic,” IEEE Trans. Fuzzy Syst., vol. 12 no.3, pp. 368-372, 2004.
[18]F. H. Hsiao, C. W. Chen Y. W. Liang, “Takagi-Sugeno Fuzzy Controllers for Nonlinear Interconnected systems with Multiple Time Delays,” IEEE Trans. Cir. and Syst., vol. 52, no. 9, pp. 855-864, 2005.
[19]W. P. Changand W. C. Young, “T-S Model Based Indirect Adaptive Fuzzy Control Using Online Parameter Estimation,” IEEE Trans. Fuzzy Syst., vol. 34 no.6, pp. 1883-1886, 2004.
[20]V. Giordano, D. Naso, and B. Turchiano, “Combining Genetic Algorithms and Lyapunov-Based Adaptation for Online Design of Fuzzy Controllers,” IEEE Trans. Syst., vol 36, no. 5, pp 1118-1124, 2006.
[21]C. H. Wang, H. L. Liu, and T. C. Lin, “Direct Adaptive Fuzzy-Neural Control with State Observer and Supervisory Controller for Unknown Nonlinear Dynamical Systems,” IEEE Trans. Fuzzy Syst., vol. 10 no.1, pp. 39-44, 2002.
[22]J. A. Wilson, M. Chew and W. E. Jones, “State Estimation-Based Control of a Coal Gasifier,” IEEE Trans. Cont. Syst., vol. 153, no. 3, pp. 2293-2301, 2006.
[23]S. J. Huang and L. C. Lin, “Fuzzy Dynamic Output Feedback Control with Adaptive Rotor Imbalance Compensation for Magnetic Bearing Systems,” IEEE Trans. Cont. Syst., vol. 34, no. 4, pp. 2268-271, 2004.
[24]S. Janardhanan and B. Bandyopadhyay, “On Discretization of Continuous-Time Terminal Sliding Mode,” IEEE Trans. Automat Contr., vol. 51, no. 9, pp. 1489-1494, 2006.
[25]C. W. Tao, J. S. Taur and M. Chan, “Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties, ” IEEE Trans. Syst., vol. 34, no. 1, pp. 586-590, 2004.
[26]Li Tzuu-Hseng S., and Tsai Shun-Hung “T-S Fuzzy Bilinear Model and Fuzzy Controller Design for a Class of Nonlinear Systems,” Trans. on Fuzzy Syst., vol. 15, no. 3, pp. 494-506, 2007.
[27]A. Dunyer K.J. Burnham T.S. McAlpine, “Self-tuning control of an industrial pilot-scale reheating furnace: Design principles and application of a bilinear approach,” IEE Proc.-Control Theory Appl., vol. 144, no. 1, January 1997.
[28]S. Martineau, K.J. Burnham, O.C.L. Haas, G. Andrews, A. Heeley “Four-term bilinear PID controller applied to an industrial furnace,” Control Engineering Practice 12 (2004) 457-464.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔