(18.204.227.34) 您好!臺灣時間:2021/05/17 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:賴建郎
研究生(外文):Jian-Lang Lai
論文名稱:針對非線性系統之強健自我建構參數式小腦模型控制器設計
論文名稱(外文):ROBUST SELF-CONSTRUCTING PARAMETRIC CEREBELLAR MODEL ARTICULATION CONTROLLER DESIGN FOR A CLASS OF NONLINEAR SYSTEMS
指導教授:呂虹慶
指導教授(外文):Hung-Ching Lu
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:54
中文關鍵詞:小腦模型控制器參數式小腦模型控制器強健控制器滑動模式控制混沌電路
外文關鍵詞:CMACparametric CMACrobust controllerSMCchaotic system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文針對非線性系統提出具有強健性的自我建構參數式小腦模型控制器(RSCP-CMAC),此控制器是由自我建構參數式小腦模型控制器(SCP-CMAC)和強健控制器所組成。自我建構參數式小腦模型控制器是用來近似理想控制器,它的優點是具有自我產生和刪除索引指標的能力,因此可以有效地節省所對應的記憶體之使用量;而強健控制器可以用來保證系統的強健追蹤效能。除此之外,本文應用滑動模式控制的概念來進行控制法則的推導,以使所提出的控制器具有更好的強健性。在推導控制器參數更新之適應法則的過程中是利用里亞普諾夫(Lyapunov)穩定分析來確保系統的穩定度。最後,把所提出的控制器應用於二階的混沌系統、蔡氏混沌電路系統、機械手臂,模擬的結果顯示出本論文所提出之控制器具有良好的追蹤性能。
The design of the robust self-constructing parametric cerebellar model articulation controller (RSCP-CMAC) for a class of nonlinear systems is proposed in this thesis. The proposed controller is composed of a self-constructing parametric CMAC (SCP-CMAC) and a robust controller. The SCP-CMAC, which has the ability in generating and eliminating the association indexes of CMAC, is utilized to approximate the ideal controller so that the corresponding memory size of the proposed controller can be reduced effectively. The robust controller is designed to achieve a specified robust tracking performance of the system. Besides, the concept of sliding-mode control (SMC) is adopted in the control scheme, and therefore, the proposed controller has more robustness against the uncertainties and the approximated error. Furthermore, based on the Lyapunov function, the adaptive laws of the RSCP-CMAC are derived so that the stability of the system can be guaranteed. Finally, the proposed controller is applied to the second-order chaotic system, Chua’s chaotic system, and one-link rigid robotic manipulator. Simulation results show the good tracking performance of the proposed controller and verify its effectiveness.
ACKNOWLEDGEMENTS i
ABSTRACT (IN ENGLISH) ii
ABSTRACT (IN CHINESE) iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
CHAPTER
1 INTRODUCTION 1
2 CMAC AND P-CMAC NETWORKS 5
2.1 Introduction of CMAC 5
2.1.1 One-Dimensional CMAC 6
2.1.2 Two-Dimensional CMAC 9
2.1.3 Two-Dimensional CMAC with Gaussian Basis Function 11
2.2 Parametric CMAC 12
3 ROBUST SELF-CONSTRUCTING P-CMAC DESIGN 15
3.1 Self-Constructing Parametric CMAC 15
3.2 Problem Statement 20
3.3 RSCP-CMAC Design 21
4 SIMULATION RESULTS 27
4.1 Second-Order Chaotic System 27
4.2 Chua’s Chaotic System 38
4.3 One-Link Rigid Robotic Manipulator 45
5 CONCLUSIONS 50
REFERENCES 51
[1] J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network.” IEE Proceedings Control Theory and Applications, vol. 152, no. 2, pp. 133–137, Mar. 2005.
[2] M. B. McFarland and A. J. Calise, ”Adaptive nonlinear control of agile antiair missiles using neural networks,” IEEE Transactions on Control Systems Technology, vol. 8, no. 5, pp. 749–756, Sept. 2000.
[3] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 751–759, Oct. 2001.
[4] H. Hu and P. Y. Woo, “Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 929–940, June 2006.
[5] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller (CMAC),” Journal of Dynamic Systems, Measurement and Control, vol. 97, pp. 220–227, 1975.
[6] Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller for robot manipulators,” IEEE Transactions on Systems, Man, Cybernetics C, vol. 30, no. 1, pp. 22–31, Feb. 2000.
[7] M. F. Yeh and K. C. Chang, “A self-organizing CMAC network with gray credit assignment,” IEEE Transactions on Systems, Man, Cybernetics B, vol. 36, no. 3, pp. 623–635, June 2006.
[8] C. M. Lin and Y. F. Peng, “Missile guidance law design adaptive cerebellar model articulation controller,” IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 636–644, May 2005.
[9] C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Transactions on Systems, Man, Cybernetics B, vol. 34, no. 2, pp. 1248–1260, Apr. 2004.
[10] S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and development of higher-order CMAC neural networks,” IEEE Control Systems Magazine, vol. 12, no. 2, pp. 23–30, Apr. 1992.
[11] K. S. Hwang and C. S. Lin, “Smooth trajectory tracking of three-link robot: A self-organizing CMAC approach,” IEEE Transactions on Systems, Man, Cybernetics B, vol. 28, no. 5, pp. 680–692, Oct. 1998.
[12] A. L. Kun and W. T. Miller, “Control of variable speed gaits for a biped robot,” IEEE Robotics and Automation Magazine, vol. 6, no. 3, pp. 19–29, Sept. 1999.
[13] H. Shiraishi, S. L. Ipri, and D. D. Cho, “CMAC neural network controller for fuel-injection systems,” IEEE Transactions on Control Systems Technology, vol. 3, no. 1, pp. 32–38, Mar. 1995.
[14] J. J. E. Slotine and W. P. Li, Applied nonlinear control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[15] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey.” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2–22, Feb. 1993.
[16] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet adaptive backstepping control for a class of nonlinear systems,” IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1175–1183, Sept. 2006.
[17] C. M. Lin, Y. F. Peng, and C. F. Hsu “Robust cerebellar model articulation controller design for unknown systems,” IEEE Transactions on Circuits and Systems, vol. 51, no. 7, pp. 354–358, July 2004.
[18] W. Y. Wang, M. L. Chan, C. C. J. Hsu, and T. T. Lee, “ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach,” IEEE Transactions on Systems, Man, Cybernetics B, vol. 32, no. 4, pp. 483–492, Aug. 2002.
[19] C. L. Lin and T. Y. Lin, “Approach to adaptive neural net-based control design,” IEE Proceedings Control Theory and Applications, vol. 149, no. 4, pp. 331–342, July 2002.
[20] P. E. M. Almeida and M. G. Simões, “Parametric CMAC networks: fundamentals and applications of a fast convergence neural structure,” IEEE Transactions on Industry Applications, vol. 39, no. 5, pp. 1551–1557, Sept./Oct. 2003.
[21] P. E. M. Almeida and M. G. Simões, “Neural optimal control of PEM fuel cells with parametric CMAC networks,” IEEE Transactions on Industry Applications, vol. 41, no. 1, pp. 237–245, Jan./Feb. 2005.
[22] J. C. Lo and Y. M. Chen, ”Stability issues on Takagi-Sugeno fuzzy model parametric approach,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 5, pp. 597–607, Oct. 1999.
[23] J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park, “Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks,” IEEE Transactions on Neural Networks, vol. 16, no. 2, pp. 414–422, Mar. 2005.
[24] S. J. Lee and C. S. Ouyang, “A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 341–353, June 2003.
[25] F. J. Lin and C. H. Lin, “A permanent-magnet synchronous motor servo drive using self-constructing fuzzy neural network controller,” IEEE Transactions on Energy Conversion, vol. 19, no. 1, pp. 66–72, Mar. 2004.
[26] C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,” IEEE Transactions on Neural Networks, vol. 18, no. 4, pp. 1232–1241, July 2007.
[27] B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of uncertain nonlinear SISO systems Adaptive fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 32–43, Feb. 1996.
[28] A. Rubaai, “Direct adaptive fuzzy control design achieving tracking for high performance servo drives,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1199–1208, Dec. 1999.
[29] Z. P. Jiang, “Advanced feedback control of the chaotic Duffing equation,” IEEE Transactions on Circuits and Systems, I, vol. 49, no. 2, pp. 244–249, Feb. 2002.
[30] C. M. Lin and C. H. Chen, “Adaptive RCMAC sliding mode control for uncertain nonlinear systems,” Neural Computing and Applications, vol. 15, no. 3/4, pp. 253–267, June 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊