(3.235.191.87) 您好!臺灣時間:2021/05/13 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳岷錡
研究生(外文):Min-chi Wu
論文名稱:增強圓型極化天線增益之研究
論文名稱(外文):GAIN ENHANCEMENT FOR CIRCULARLY POLARIZED ANTENNAS
指導教授:張知難
指導教授(外文):The-nan Chang
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:77
中文關鍵詞:圓型極化微帶線天線線性極化
外文關鍵詞:microstrip patch antennaslinear polarizationcircular polarizationgain enhancement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,提出了一種由微帶線饋入的微帶線天線,此天線是被設計應用於2.45GHz的無線區域網路,而為了要提升微帶線天線的增益值,設計了一個天線罩放在微帶線天線的正前方,中間有空氣層。經模擬及實驗結果,且此天線罩可以提升微帶線天線的增益值,從原本的3.1 dBi增加為6.57dBi,其阻抗頻寬為80MHz,且空氣層的高度只有真空中波長的1/10。由HFSS模擬軟體的電場分佈,可以看出此天線罩具有聚焦的功能。
由於圓形極化天線能產生圓形極化波,可以進一步改善接收訊號的能力。 故在本篇文章中也設計了一個應用於2.45GHz的圓形極化微帶線天線,並且也設計了一個新的天線罩用於此圓形極化天線,這一個新的天線罩不但可以提升圓形極化天線的增益值並且可以維持圓形極化天線的3dB軸比寬。天線增益值由3dBic增加為7.1dBic,3dB軸比寬約為25MHz,阻抗頻寬為146MHz。
In this thesis, a microstrip patch antenna fed by a microstrip line is represented. This microstrip patch antenna is designed at 2.45GHz for wireless local area network (WLAN). The goal of this thesis is to enhance gain of microstrip antenna. An antenna radome is proposed to increase the gain of microstrip patch antenna and there is an air gap which is only 0.1 between two substrates. From simulation and measurement results, the gain of microstrip patch antenna with a radome increases 3.47dBi from 3.1dBi to 6.57dBi, and impedance bandwidth is 80MHz. Field distributions shows that the radome has a congregation effect on the radiation of the electromagnetic waves.
Due to the circularly polarization patch antenna can improve the ability of transmitting and receiving. A circularly polarization patch antenna is also investigated. A novel antenna radome is proposed for this circularly polarization patch antenna. This antenna radome not only increases the gain but also maintains the axial ratio. The gain is enhanced from 3dBic to 7.1dBic, axial ratio bandwidth is about 25MHz, and impedance bandwidth is 146MHz.
ACKNOWLEDGMENTS i
ENGLISH ABSTRACT ii
CHINESE ABSTRACT iii
LIST OF FIGURES vi
LIST OF TABLES xi
CHAPTER
I.INTRODUCTION 1
1.1 Microstrip antennas 1
1.2 Introduction to Wireless LANs 2
1.3 Literature Survey 4
1.4 Chapter Outline 5
II.GAIN ENHANCEMENT FOR LINEARLY POLARIZED PATCH ANTENNAS 6
2.1 Microstrip Antennas 6
2.2 Microstrip Patch Antenna Design 8
2.3 Proposed Antenna With an Radome Design 12
2.4 Simulation and Experimental Results 24
2.4.1 Return loss 26
2.4.2 Gain and Radiation Pattern 28
III.GAIN ENGANCEMENT FOR CIRCULARLY POLARIZED TRUNCATED SQUARE PATCH ANTENNAS 32
3.1 Structure of General Signal Feed for Circularly Polarization 32
3.2 A New Antenna Radome Design for the Circularly Polarization Patch Antenna 37
3.3 Simulation and Experimental Results 50
3.3.1 Return loss 52
3.3.2 Axial Ratio 54
3.3.3 Gain and Pattern 56
IV.FIELD DISTRIBUTIONS 60
4.1 Field Distributions of Linearly Patch antenna 60
4.2 Field Distributions of Circularly Polariaztion Patch antenna 62
V.CONCLUSIONS 64
APPENDIX
A.GAIN ENHANCEMENT FOR CIRCULARLY POLARIZED PATCH ANTENNA USING A SQUARE PATCH WITH A SLOT 66
A.1 Structure of new circularly polarization patch antenna 66
A.2 Experimental Results 68
A.2.1 Return Loss 69
A.2.1 Gain, Axial and Radiation Patterns 70
REFERENCES 73
AUTHOR 77
[1] http://en.wikipedia.org/wiki/Microstrip_antenna.
[2] Bancroft, R. Microstrip and Printed Antenna Design Noble Publishing 2004, Chapter 2-3.
[3] http://www.accton.com.tw/products/whitepaper/paper_2.htm.
[4] J. Q. Howell, “Microstrip antennas,’’ 1972 G-AP Int. Symp., Williamsburg, VA, Dec 1972.
[5] R. Munson, “Conformal microstrip antennas and microstrip phased arrays,” Antennas and Propagation, IEEE Transactions on., Volume 22, Issue 1, pp(s):74–78, Jan 1974.
[6] L. Shen, S. Long, M. Allerding and M. Walton, “Resonant frequency of a circular disc, printed-circuit antenna,” Antennas and Propagation, IEEE Transactions on., Volume 25, Issue 4, pp(s):595–596, Jul 1977.
[7] D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” Antennas and Propagation, IEEE Transactions on., Volume 33, Issue 9, pp(s):976–987, Sep 1985.
[8] N. G. Alexopoulos and D. R. Jackson, “Fundamental Superstrate Effects on Printed Circuit Antenna Efficiency,” Microwave Symposium Digest, MTT-S International., Volume 84, Issue 1, pp(s):475–476, May 1984.
[9] R. Q. Lee, K. F. Lee and J. Bobinchak, “Characteristics of a two-layer electromagnetically coupled rectangular patch antenna,” Electronics Letters., Volume 23, Issue 20, pp(s):1070–1072, September 24 1987.
[10] H. Yang and N. Alexopoulos, “Gain enhancement methods for printed circuit antennas through multiple superstrates,” Antennas and Propagation, IEEE Transactions on., Volume 35, Issue 7, pp(s):860–863, Jul 1987.
[11] N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent and H. Legay, “A metallic Fabry-Perot directive antenna,” Antennas and Propagation, IEEE Transactions on., Volume 54, Issue 1, pp(s):220-224 Jan. 2006.
[12] A. P. Feresidis and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” Microwaves, Antennas and Propagation, IEE Proceedings., Volume 148, Issue 6, pp(s):345-350 Dec. 2001.
[13] A. Alu, F. Bilotti, Nader Engheta and L. Vegni, “Metamaterial covers over a small aperture,” Antennas and Propagation, IEEE Transactions on., Volume 54, Issue 6, pp(s):1632–1643, June 2006.
[14] F. Zhu, Q. Lin and J. Hu, “A directive patch antenna with a metamaterial cover,” Microwave Conference Proceedings,2005 APMC 2005. Asia-Pacific Conference Proceedings., Volume 3, pp(s):4-7, Dec. 2005.
[15] C. Y. Wu, S. H. Yeh and T. H. Lu, “Planar high gain antenna for 5.8-GHz WiMAX operation,” TENCON 2007 - 2007 IEEE Region 10 Conference., pp(s):1–3, Oct. 30 2007-Nov. 2 2007.
[16] H. H. Lin, C. Y. Wu and S. H. Yeh, “Metamaterial enhanced high gain antenna for WiMAX application,” TENCON 2007 - 2007 IEEE Region 10 Conference., pp(s):1–3, Oct. 30 2007-Nov. 2 2007.
[17] M. Beruete, I. Campillo, J. E. Rodriguez-Seco, E. Perea, M. Navarro-Cia, I. J. Nunez-Manrique and M. Sorolla, “Enhanced Gain by Double-Periodic Stacked Subwavelength Hole Array,” Microwave and Wireless Components Letters, IEEE., Volume 17, Issue 12, pp(s):831–833, Dec. 2007.
[18] H. N. Liu, H. L. Su, K. H. Lin, C. Y. Wu, C. L. Tang and S. H. Yeh, “Design of antenna radome composed of metamaterials for high gain,” Antennas and Propagation Society International Symposium 2006, IEEE., pp(s):19–22, 9-14 July 2006.
[19] Z. B. Weng, N. B. Weng and Y. C. Jiao, “Study on High Gain Patch Antenna with Metamaterial Cover,” Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on., pp(s):1–2, Oct. 2006
[20] S. N. Burokur, M. Latrach and S. Toutain, “Left-handed medium effect on the characteristics of a circular patch antenna,” Antennas and Propagation Society International Symposium, 2005 IEEE., Volume 1A, pp(s):680–683, 3-8 July 2005.
[21] Warren L. Stutzman and Gary A. Thiele, “Antenna theory and design,” Wiley, New York, 1998.
[22] K. R. Carver and J. W. Mink, “Microstrip antenna Technology.” IEEE Trans. Antenna & Propagation, Volume. AP-22, pp(s): 74-78, Jan. 1974.
[23] D. R. Jackson and N. G. Alexopoulos, “Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch,” Antennas and Propagation, IEEE Transactions on., Volume 39, Issue 3, pp(s):407–410, March 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔