(3.235.191.87) 您好!臺灣時間:2021/05/13 04:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張鈺仁
研究生(外文):Yu-Ren Jhang
論文名稱:台灣地區電力尖峰負載預測之研究
論文名稱(外文):The Peak Load Forecasting of Electricity in Taiwan
指導教授:謝日章謝日章引用關係
指導教授(外文):Jih-Chang Hsieh
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:電力尖峰負載案例式推理迴歸分析預測
外文關鍵詞:Electricity Peak LoadCase-Based ReasoningRegression AnalysisForecasting
相關次數:
  • 被引用被引用:3
  • 點閱點閱:339
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電力為生活中不可或缺的能源,不論是一般傳統產業或是新興高科技產業皆以電力為主要動力。而現代人對電的需求量日益增加,若能有效預測電的需求,便能使電力業者更有效的規劃與開發電能,因此本研究想藉由人工智慧中的案例式推理並結合迴歸分析來對電力尖峰負載預測做較精確的預測,研究的結果也能提供給電力業者做一參考。

本研究透過案例式推理並結合了迴歸分析來建構電力尖峰負載預測模型,透過迴歸分析所建立的迴歸方程式並利用其迴歸係數來表示案例中每個變數的重要程度,經由實證結果發現,結合迴歸分析的案例式推理其平均絕對百分比誤差較一般傳統案例式推理與迴歸分析的平均絕對百分比誤差來的好,因此本研究結合迴歸分析的案例式推理確實能有效的降低平均絕對百分比誤差,也提供學術上另一種新的解決電力尖峰負載預測的方法。

目 錄
中文摘要 i
誌 謝 ii
目 錄 iii
表目錄 v
圖目錄 vii
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究目的 2
1.3 研究架構與流程 3
1.3.1 研究架構 3
1.3.2 研究流程 4
第二章 文獻探討 6
2.1 電力負載預測相關文獻探討 6
2.2 案例式推理相關文獻探討 21
2.3 案例式推理應用於電力負載相關文獻 28
第三章 問題定義與資料來源 31
3.1 資料來源 31
3.2 資料處理 32
3.3 變數說明 33
3.4 小結 35
第四章 研究方法 36
4.1 案例式推理流程 37
4.2 迴歸分析流程 48
4.3 結合迴歸分析之案例式推理流程 52
4.4 結合案例式推理之迴歸分析流程 58
4.5 小結 65
第五章 實證分析 66
5.1 案例式推理與迴歸分析 66
5.2 整合案例式推理與迴歸分析 69
5.3 整合迴歸分析與案例式推理 70
5.4 各模型的比較 70
5.5 模型變數之探討 72
5.6 小結 74
第六章 結論與未來展望 75
6.1 研究結論 75
6.2 研究限制與未來展望 76
參考文獻 77
中文文獻
1.大氣研究資料庫網站,http://dbar.as.ntu.edu.tw/。
2.左心如,以案例式推理為基礎之艙位規劃決策研究,元智大學工業工程與管理學系碩士論文,民92年。
3.李宗恩,利用迴歸法之短期負載預測,國立台灣大學電機工程研究所碩士論文,民78年。
4.李德昌,案例式推理(CBR)對新產品開發與設計作業流程改善之研究,元智大學工業工程與管理學系碩士論文,民93年。
5.何仁祥,以案例式推理為基礎的基因演算法解決生產排程問題,元智大學工業工程與管理學系碩士論文,民92年。
6.陳洽堂,應用模糊邏輯與案例式推理於學生認輔系統之知識分享與決策制定,南華大學資訊管理學研究所碩士論文,民93年。
7.莊國彬,結合灰色與模糊理論在負載預測之應用,國立台北科技大學電機工程系碩士班碩士論文,民89年。
8.許哲強、賴正文、陳家榮,預測方法之比較以台灣地區負載預測為例,能源季刊,第31卷,第4期,頁66-80,民90年。
9.許哲強,台灣區域電力負載預測分析系統之建立與應用研究,國立成功大學資源工程學系碩博士班博士論文,民91年。
10.黃敬淳,平行式類神經網路電力負載預測系統模式化之研究,東海大學工業工程與經營資訊學系碩士論文,民94年。
11.經濟部能源局,http://www.moeaec.gov.tw/。
12.蔡仁平,考慮氣候因素之短期負載預測,國立清華大學電機工程研究所碩士論文,民77年。
13.鄭金波,類神經網路隨機倒傳遞學習法則於電力負載預測之應用,國立中山大學電機工程研究所碩士論文,民87年。
英文文獻
14.Aamodt, A. and Plaza E., “Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches,” Artificial Intelligence Communications, Vol. 7:1, 1994, pp. 39-59.
15.Al-Hamadi, H. M. and Soliman, S. A., “Fuzzy short-term electric load forecasting using Kalman filter ,” IEE Proc.-Gener. Transm. Distrib., Vol. 153, No. 2, 2006, pp. 217-227.
16.Caire, P., Hatabian, G.., and Muller, C., “Progress in Forecasting by Neural Networks”, International Joint Conference on Neural Networks, Baltimore, USA, Vol. 2, 1992, pp. 540-545.
17.Charytoniuk, W., Chen, M. S. and Olinda, P. V., “Nonparametric Regression Based Short-Term Load Forecasting,” IEEE Transactions on Power Systems, Vol. 13, No. 3, 1998, pp. 725-730.
18.Chun S. H. and Park, Y. J., “Dynamic adaptive ensemble case-based reasoning: application to stock market prediction,” Expert Systems with Applications, Vol. 28, 2005, pp. 435-443.
19.Chun S. H. and Park, Y. J., “A new hybrid data mining technique using a regression case based reasoning: Application to financial forecasting,” Expert Systems with Applications, Vol. 31, 2006, pp. 329-336.
20.Doveh, E., Feigin, P., Greig, D. and Hyams, L., “Experience with FNN models for medium term power demand predictions”, IEEE Transactions on Power Systems, Vol. 14, No. 2, 1999, pp. 538-546.
21.Daengdej, J., Lukose, D. and Murison, R., “Using statistical models and case-based reasoning in claims prediction: experience from a real-world problem,” Knowledge-Based Systems, Vol. 12, 1999, pp. 239-245.
22.Djukanovic, M., Ruzic, S., Babic, B. D., Sobajic, D. J., and Pao, Y. H., “A neural-net based short term load forecasting using moving window procedure,” Electrical Power & Energy Systems, Vol. 17, No. 6, 1995, pp. 391-397.
23.Fan, S. and Chen, L., “Short-Term Load Forecasting Based on an Adaptive Hybrid Method,” IEEE Transactions on Power Systems, Vol. 21, No. 1, 2006, pp. 392-401.
24.Huang, C. M., Huang C. J., and Wang M. L., “A Particle Swarm Optimization to Identifying the ARMAX Model for Short-Term Load Forecasting,” IEEE Transactions on Power Systems, Vol. 20, No. 2, 2005, pp. 1126-1133.
25.Igor, J., Mylopoulos, J., Glasgow, J., Shapiro, H., and Casper, R. F., “Case-based Reasoning in IVF:Prediction and Knowledge Mining,” Artificial Intelligence in Medicine, 1998, pp. 1-24.
26.Kolodner, J., “Case-Based Reasoning,” Morgan Kaufmann Publishers, Inc., 1993.
27.Kandil, N., Wamkeue, R., Saad M., and Georges, S., “An efficient approach for short term load forecasting using artificial neural networks,” International Journal of Electrical Power & Energy Systems, Vol. 28, No. 8, 2006, pp. 525-530.
28.Lu, C. N., Wu, H. T. and Vemuri, S., “Neural Network based Short Term Load Forecasting,” IEEE Transactions on Power Systems, Vol. 8, No. 1, 1993, pp. 336-342.
29.Leake, D. B., “Case-Based Reasoning: experiences, lessons, and future directions, MIT Press, Massachusetts Institute of Technology,” Cambridge, Massachusetts and London, England, 1996.
30.Liang, R. H. and Cheng, C. C., “Combined regression-fuzzy approach for short-term load forecasting,” IEE Proc.-Gener. Transm. Distrib., Vol. 147, No. 4, 2000, pp. 261-266.
31.Ling, S. H., Leung, H. F., Lam, H. K. and Peter K. S., “Short-Term Electric Load Forecasting Based on a Neural Fuzzy Network,” IEEE Transactions on Industrial electronics, Vol. 50, No. 6, 2003, pp. 1305-1316.
32.Liao, G. C. and Tsao, T. P., “Application of a Fuzzy Neural Network Combined With a Chaos Genetic Algorithm and Simulated Annealing to Short-Term Load Forecasting,” IEEE Transactions on Evolutionary computation, Vol. 10, No. 3, 2006, pp. 330-340.
33.Mohamad, E. A., Mansour, M. M., El-Debeiky, S., Mohamad, K. G.. and Rao, N. D., “Result of Egyptian Unified Grid Hourly Load Forecasting Using an Artificial Neural Network with Expert System Interface,” Electric Power Systems Research, Vol. 39, 1996, pp. 171-177.
34.Mandal, P., Senjyu, T., Urasaki, N. and Funabashi, T., “A neural network based several-hour-ahead electric load forecasting using similar days approach,” International Journal of Electrical Power & Energy Systems, Vol. 28, No. 6, 2006, pp. 367-373.
35.Niu, D., Li, J., Li, J. and Wang, Q., “Daily Load Forecasting Using Support Vector Machine and Case-Based Reasoning,” Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference, 2007, pp. 1271-1274.
36.Papalexopoulos, A. D. and Hesterberg, T. C., “A Regression-based approach to short-term load forecasting,” IEEE Transactions on Power Systems, Vol. 5, No. 4, 1990, pp. 1535-1550.
37.Radwan, E. A., “Short-Term Hourly Load Forecasting Using Abductive Networks,” IEEE Transactions on Power Systems, Vol. 19, No. 1, 2004, pp. 164-173.
38.Schank, R., “Dynamic Memory: A Theory of Learning in Computers and People,” New York: Cambridge University Press, 1982.
39.Sfetsos, A., “Short-term load forecasting with a hybrid clustering algorithm,” IEEProc.-Gener. Transm. Distrib., Vol. 150, No. 3, 2003, pp. 257-262.
40.Song, K. B., Baek, Y. S., Hong, D. H., and Jang, G., “Short-Term Load Forecasting for the Holidays Using Fuzzy Linear Regression Method,” IEEE Transactions on Power Systems, Vol. 20, No. 1, 2005, pp. 96-101.
41.Song, K. B., Ha, S. K., Park, J. W., Kweon, D. J., and Kim, K. H., “Hybrid Load Forecasting Method With Analysis of Temperature Sensitivities,” IEEE Transactions on Power Systems, Vol. 21, No. 2, 2006, pp. 869-876.
42.Takeshi, H. S., “Regression based peak load forecasting using a transformation techinique,” IEEE Transactions on Power Systems, Vol. 9, No. 4, 1994, pp. 1788-1794.
43.Tamimi, M. and Egbert, R., “Short Term Electric Load Forecasting via Fuzzy Neural collaboration,” Electric Power Systems Research, Vol. 56, 2000, pp. 243-248.
44.Tsai, C. Y., Chiu, C. C. and Chen, J. S., “A case-based reasoning system for PCB defect prediction,” Expert Systems with Applications, Vol. 28, 2005, pp. 813-822.
45.Watson, I., and Marir, F., “Case-Based Reasoning: A Review,” Knowledge Engineering Review, Vol. 9, No. 4, 1994.
46.Wu, J. and Yu, Y., “Connectionism-Based CBR Method for Distribution Short-Term Nodal Load Forecasting,” Tencon 2005 2005 IEEE Region 10, 2005, pp. 1-6.
47.Wang, Z. Y., “Developed case-based reasoning system for short-term load forecasting,” IEEE Power Engineering Society General Meeting, 2006, pp. 18-22.
48.Yuan, J., Qu, l., Zhang, W., and Li, L., “Case-based Reasoning Combined with Information Entropy and Principal Component Analysis for Short-term Load Forecasting,” IEEE 2007 International Conference on Computational Intelligence and Security, 2007, pp. 446-450.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔