跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱立翰
研究生(外文):LeeHan Chiou
論文名稱:常壓化學氣相沉積法成長氧化鋅奈米柱與其在染料敏化太陽電池之應用
論文名稱(外文):Growth of ZnO nanorods by atmospheric pressure chemical vapor deposition and their applications in dye-sensitized solar cells
指導教授:劉彥君、李明威、戴明
學位類別:碩士
校院名稱:吳鳳技術學院
系所名稱:光機電暨材料研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:148
中文關鍵詞:氧化鋅染料敏化太陽電池
外文關鍵詞:ZnO、dye-sensitized solar cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:223
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用常壓化學氣相沉積法(atmospheric pressure chemical vapor deposition;APCVD),配合汽-固(vapor-solid;VS)機制在藍寶石(sapphire;Al2O3)基板上成長大面積垂直且高順向性之氧化鋅奈米柱,另外透過強鹼性化學蝕刻方式改變基板表面粗糙度,觀察氧化鋅奈米柱成長之變化與影響,並使用FE-SEM、HR-TEM、XRD、PL等儀器來分析氧化鋅奈米柱之特性。實驗中所成長的氧化鋅奈米柱,直徑最細為65nm,長度最高可達25μm,並透過XRD和TEM的分析,證實不同氧流量下與溫度下所成長的氧化鋅奈米柱都屬於單晶的纖鋅礦結構,且具有沿[0001]面成長的特性。而PL圖譜則顯示出氧流量越高綠光峰的強度越小。將成長完成的氧化鋅奈米柱陣列做為陽極,組裝成氧化鋅染料敏化太陽電池(ZnO DSSC),搭配N3與N719兩種染料作為敏化劑,目前實驗中測得最高效率為2.77%。
The research used atmospheric pressure chemical vapor deposition, coordinated with vapor-solid mechanism of the big area growth of ZnO nanorods vertically and homogeneously on sapphire substrates , Moreover , through the alkalinity chemical etching way changed surface roughness of substrates , to observe the variations and effects of the growing ZnO nanorods , and used instruments as below , FE-SEM , HR-TEM , XRD , PL to analyze characteristics of the ZnO nanorods . The diameter of grown ZnO nanorods in the experiment was 65nm , and the longest length could be up to 25μm, and through XRD and the TEM to analyze , confirmed that , the grown ZnO nanorods under different oxygen flow and temperature are wurtzite crystal structure , and has the growing characteristic along the [0001] direction . The PL spectrum showed green peek intensity decreased with the oxygen flow . We took the grown ZnO nanorods array to be the anode, and assembled these to become the ZnO dye-sensitized solar cells , matched N3 and N719 to be the sensitizer . The highest efficiency at present experiment was 2.77% .
中文摘要 I
英文摘要 II
致謝 III
目錄 V
表目錄 XI
圖目錄 XII

第一章 序論 1
1-1前言 1
1-2奈米材料簡介 3
1-3研究動機 6

第二章 理論基礎與文獻回顧 8
2-1氧化鋅晶體結構與特性 8
2-1-1 晶體結構 8
2-1-2 極性表面與壓電特性 10
2-1-3 熱穩定性 10
2-1-4 能帶結構 10

2-2氧化鋅的理想晶體成長模型 11
2-3氧化鋅奈米柱成長機制 13
2-3-1 氣-液-固磊晶機制(VLS) 13
2-3-2 氣-固磊晶機制(VS) 16
2-4 氧化鋅奈米柱之合成方法 17
2-4-1 化學浴沉積法(Chemical bath deposition) 17
2-4-2 金屬有機化學氣相沉積法(MOCVD) 19
2-4-3 熱蒸鍍法(Thermal Evaporation) 20
2-4-4 模板輔助成長法(Template-assisted) 21
2-4-5 濺鍍法(Sputtering deposition) 22
2-4-6 晶種輔助成長法(Seed-layer assisted growth) 23
2-5氧化鋅發光特性 24
2-5-1 紫外光放射(UV emission) 24
2-5-2 綠光放射(Green emission) 25
2-6 氧化鋅奈米柱相關應用 28
2-6-1 奈米柱與奈米粒之染料敏化太陽電池 28
2-6-2 紫外光雷射 31
2-6-3 葡萄糖生物感測器 32
2-7 太陽能電池簡介 33
2-7-1 矽基太陽能電池(Silicon-based solar cell) 33
2-7-2 薄膜太陽能電池(Thin-film solar cell) 35
2-7-3 染料敏化太陽能電池(Dye-Sensitized Solar Cell) 36

第三章 實驗製程 39
3-1實驗藥品與耗材 39
3-2儀器設備 40
3-3實驗規劃流程(圖) 41
3-4實驗系統設計 42
3-4-1 APCVD法生長氧化鋅奈米柱之機制 42
3-4-2 氧化鋅奈米柱染料敏化太陽電池 43
3-5實驗步驟 44
3-5-1氧化鋅奈米柱光電極製法 44
3-5-2電解質溶液製備(1376) 47
3-5-3染料調製與光電極敏化方法 48
3-5-4對電極材料與製備 52
3-5-5 DSSC元件組裝與量測 53
3-6分析與鑑定 55
3-6-1 太陽能電池效率量測系統 55
3-6-2 太陽能電池效率計算 56
3-6-3 場發射掃描式電子顯微鏡(FE-SEM) 59
3-6-4 高解析穿透式電子顯微鏡(HR-TEM) 60
3-6-5 X光繞射儀(XRD) 62
3-6-6 光子激發光譜儀(PL) 63
3-6-7 原子力顯微鏡(AFM) 64
3-6-8 紫外光/可見光光譜儀(UV-VIS) 65

第四章 常壓化學氣相沉積法成長氧化鋅奈米柱 66
4-1反應氣體O2流量對氧化鋅奈米柱形貌之影響 66
4-1-1原始藍寶石基板 66
4-2基板前處裡對氧化鋅奈米柱成長的影響 80
4-2-1化學蝕刻藍寶石基板 80
4-3氧化鋅晶種層的形成與變化 94
4-3-1原始藍寶石基板 94
4-3-2化學蝕刻藍寶石基板 96
4-4反應溫度對氧化鋅奈米柱形貌的影響 99
4-4-1設定870℃成長 99
4-4-2設定970℃成長 100
4-4-3設定1070℃成長 101
4-4-4設定650℃成長 102
4-5氧化鋅奈米柱特性分析 104
4-5-1 XRD繞射分析 104
4-5-2 HR-TEM穿透式電子顯微分析 106
4-5-3 EDS能量散佈分析 106
4-5-4 PL光子激發光譜分析 108
4-6結論 110

第五章 染料敏化太陽電池 111
5-1 氧化鋅奈米柱陣列之染料敏化太陽電池 111
5-2 氧化鋅奈米柱染敏太陽電池效率量測 113
5-2-1 ZnO DSSC量測與分析(銀膠橋接電極) 114
5-2-2 ZnO DSSC量測與分析(銦橋接電極) 117
5-3 結論 121

第六章 總結與未來改進方向 122
6-1 總結 122
6-2 未來改進方向 123

參考文獻 124
1.莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 民86.
2.M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001).
3.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737, (1991).
4.Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter. 16, 829-858 (2004).
5.Chen-Hao Ku, Jih-JenWu, “Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells ” ,Nanotechnology 18, 505706, (2007).
6.W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods” ,Appl. Phys. Lett , 80, 4232 , (2002).
7.B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation ”,Appl. Phys. Lett, 81, 757,(2002).
8.H. J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gösele, A. Dadgar, and A. Krost, Superlattice. Microst, 36, 95, (2004).
9.L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds” , Nano Lett,5,1231,(2005).
10.H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly” ,Appl. Phys. Lett, 84, 3376, (2004).
11.R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth ” Appl. Phys. Lett, 4, 89, (1964).
12.龔吉合等譯,“材料科學導論”,滄海,台中市,民87。
13.Z. Fan, and J. G. Lu, “Zinc Oxide Nanostructures: Synthesis and Properties,” J. Nanosci Nanotechnol. 5, 1561-1573 (2005).
14.B. Meyer and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces” , Phys. Rev. B 67, 035403 (2003).
15.W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu, and D. Feng, “Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance”, Appl. Phys. Lett. 71, 548 (1997).
16.M. Chen, Z. L. Pei, X. Wang, C. Sun and L. S. Wen “Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A, vol. 19, pp. 963-970, (2001).
17.S. Bloom and J. Ortenburger, “Pseudopotential Band Structure of ZnO”, J. Phys. Status Solidi(b) 58, 561 (1973).
18.施敏,張俊彥,半導體元件物理與製作技術,高立圖書有限公司,2001 年三版。
19.Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization” ,J. Appl. Phys. 84, 3912 (1998).
20.Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”,Appl. Phys. Lett. 72, 3270 (1998).
21.R. A. Laudise and A. A. Ballman, “Hydrothermal Synthesis of Zinc Oxide And Zinc Sulfide”, J. Phys. Chem. 64(5), 688 (1960)
22.W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth Mechanism and Growth Habit of Oxide Crystals”, J. Cryst. Growth, 203, 186–96 (1999).
23.Y. Wu, P. Yang, J. Am. Chem. Soc. (2002).
24.P. Yang and C. M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites” ,J. Mater. Res, 12, 2981, (1997).
25.賴致遠,國立成功大學化學工程研究所碩士論文,2006年。
26.J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater., 14, 215 (2002).
27.L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater. 15, 464-466 (2003).
28.K. Govender, S. Boyle, P. David, O'Brien, D. Binks, D. West, and D. Coleman, “Room-Temperature Lasing Observed from ZnO Nanocolumns Grown by Aqueous Solution Deposition”, Adv. Mater., 14, 1221–4 (2002).
29.S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem. 12, 3773, (2002).
30.B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett, 81, 757, (2002).
31.J. S. Kim, “Characterization of high quality c-axis oriented ZnO Thin films grown by metal organic chemical vapor deposition using zinc acetate as source material”, Thin Solid Films, 217, 133,(1992).
32.W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation” ,Acta Mater, 52, 3949, (2004).
33.G. C. Yi, C. Wang and W. II Park, “ZnO nanorods: synthesis, characterization and applications” ,Semicond. Sci. Technol, 20, 22, (2005).
34.Z. Zhou, W. Peng, S. Ke, H. Deng, Journal of Materials Processing Technology ,69,415,(1999).
35.Minoru Satoh, Norio Tanaka, Yoshikazu Ueda, Shigeo Ohshioand Hidetoshi Saitoh, “Epitaxial Growth of Zinc Oxide Whiskers by Chemical-Vapor Deposition under Atmospheric Pressure” ,Japanese Journal of Physics , 38, L586 , (1999).
36.H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett, 84, 3376,(2004).
37.Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. ying and J. Heremans, “Electronic transport properties of single-crystal bismuth nanowirearrays”, Phy. Rev. B, 61, 4850 (2000).
38.W. Wang, C. Xu, G. Wang Y. Liu and C. Z heng, “Synthesis and Raman scattering study of rutile SnO2 nanowires”, J. Appl. Phy., 92, 2740 (2002).
39.M. Li and C. Wang and H. Li, “Synthesis of ordered Si nanowire arrays in porous anodic aluminum oxide templates”, Chinese Sci. Bull,.46, 1793(2001).
40.M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin and H. Yoneyama, “Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries”, J. Electrochem. Soc., 144, 1923 (1997).
41.王元聰,國立成功大學材料科學及工程學系博士論文,2004年。
42.Ki Hyun Yoon, “Characteristics of ZnO thin films deposited onto Al / Si substrates by r.f magnetron sputtering” Thin Solid Films, 302, 116-121,(1997).
43.M. F. Ogawa, “Preparation and electrical properties of undoped zinc oxide films by CVD”, Journal of Material Science Letters, 9,1351, (1990).
44.葉俊清,國立成功大學材料科學與工程學系碩士論文,2007年。
45.陳明達,國立成功大學材料科學與工程學系碩士論文,2005年。
46.H. J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gösele, A. Dadgar, and A. Krost, “Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers” , Superlattice. Microst, 36, 95,(2004).
47.L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett, 5, 1231,(2005).
48.X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films”, Lumine. vol. 99, nol. 2, pp. 149,(2002).
49.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gande, “ Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys, 79 (10), 7983,(1996).
50.廖泓洲,國立交通大學材料科學與工程學系碩士論文,2005年。
51.Bixia Lin and Zhuxi Fu, Yunbo Jia, “Green luminescent center in undoped zinc oxide films depositedon silicon substrates” ,Appl. Phys. Lett,79(7), 943-945 ,(2001).
52.Wei Li, Dongsheng Mao, Fumin Zhang, Xi Wang, Xianghuai Liu, Shichang Zou, YuKun Zhu, Qiong Li, Nuclear Instruments and Methods in Physics Research B 2000, 169,59
53.M. Gratzel, “Dye-sensitized solar cells” ,J. Photoch. Photobio. C: Photoch. Rev. 4 , 145 ,(2003).
54.鄭名山,物理雙月刊廿九卷三期,2007年六月。
55.J. B. Baxter, A. M. Walker, K. V. Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells” ,Nanotechnology , 17, 304 ,(2006).
56.X. Han, G. Wang, Q. Wang, L. Cao, R. Liu, B. Zou, and J. G. Hou, “Ultraviolet lasing and time-resolved photoluminescence of well-aligned ZnO nanorod arrays” ,Appl. Phys. Lett, 86, 223106 ,(2005).
57.Z. L. Wang, X. Y. Kong, and J. M. Zuo, “Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces” ,Phys. Rev. Lett. 91, 502 (2003).
58.J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection” ,Appl. Phys. Lett, 88, 233106 ,(2006).
59.黃建昇,結晶矽太陽電池發展近況,工業材料雜誌,203期,150,2003年。
60.張品全,太陽電池,科學發展349期,2002年 1 月。
61.郭明村,薄膜太陽電池發展近況,工業材料雜誌,203期,138,2003年。
62.S. Guha et al,“Structural, defect, and device behavior of hydrogenated amorphousSi near and above the onset of microcrystallinity” ,Appl. Phys. Lett, 74, 1860, (1999).
63.Antonio Luaue and Steven Hegedus,Handbook of photovoltaic Science and Enginnering, 2004.
64.Frank Hurd and Robert Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem, (44) ,865-873 , (1940).
65.S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. I.” J. Phys. Chem, (69) , 641 ,(1965).
66.S. Chaberek, A. Shepp and R. J. Allen, “Dye-Sensitized Photopolymerization Processes. I.” J. Phys. Chem, (69) ,647 , (1965).
67.S. Chaberek, A. Shepp and R. J. Allen,“Dye-Sensitized Photopolymerization Processes.1a III. The Photoreducing Activity of Some Dicarbonyl Compounds ”J. Phys. Chem, 69 ,2834 ,(1965).
68.Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc, (89) ,5456 ,(1967).
69.H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature 261, 402 , (1976).
70.M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem, 44 , 6841 ,(2005).
71.Zhong-Sheng Wang,Masatoshi Yanagida,Kazuhiro Sayama and Hideki Sugihara,“Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye- Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency” ,Chem. Mater, 18, 2912-2916 ,(2006).
72.王釿鋊,“染料半導體光電池” ,中技社通訊,41,5,2002年。
73.Martin A. Green, Keith Emery, David L. King, Yoshihiro Hishikawa and Wilhelm Warta, “Solar Cell Efficiency Tables(Version 28) ” , Prog. Photovolt : Res. Appl ,14 , 455–461 ,(2006).
74.莊宜珈,國立中興大學物理學研究所碩士論文,2008年。
75.李德龍,國立中興大學物理學研究所碩士論文,2007年。
76.C. Lin, H. Lin, J. Li, X. Li, J. Alloys Compd. (2007).
77.D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, “The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires” , Chemical Physics Letters, 442, 348–353 (2007).
78.鄭揚霖,國立成功大學化學工程系碩士論文,2006年。
79.Fang, J. ,Su, L. , Wu, J. , Shen, Y. , Lu, Z. , “Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes” , New J. Chem 21, 1303-1307, (1997).
80.Guo, M.,Diaoc, P., Rena, Y. J., Mengd, F., Tiand, H., Cai, S.M., “Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes” , Solar Energy Materials & Solar Cells , 88 ,23–35, (2005).
81.Ma, T., Fang, X.,Akiyama, M.,Inoue K.,Noma, H.,Abe, E., “Properties of several types of novel counter electrodes for dye-sensitized solar cells”, Journal of Electroanalytical Chemistry and Photobiology A: Chemistry, 574, 77–83, (2004).
82.A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).
83.Kiyoaki Imoto, Kohshin Takahashi, Takahiro Yamaguchi, Teruhisa Komura, Jun-ichi Nakamura, Kazuhiko Murata , Solar Energy Materials & Solar Cells ,79 ,459–469 ,(2003).
84.Takurou N. Murakami, Seigo Ito, Qing Wang, Md. Khaja Nazeeruddin, Takeru Bessho, Ilkay Cesar, Paul Liska, Robin Humphry-Baker, Pascal Comte, Péter Péchy, and Michael Grätzelz, Journal of The Electrochemical Society, 153 ,(12) ,A2255-A2261 ,(2006).
85.鄭信民、林麗娟,場發射掃描式電子顯微鏡分析技術應用簡介,工業材料雜誌21期,109頁-116頁,92年。
86.羅聖全,電子顯微鏡介紹– TEM。
87.汪建民,材料分析,中國材料學學會,1998年。
88.陳哲雄、林俊勳、林紋瑞、吳靖宙,原子力顯微鏡成像原理與中文操作手冊,成功大學醫學工程所生醫感測實驗室。
89.王建義編譯,薄膜工程學第二版,全華,台北市,民95。
90.J A Venables, Nucleation and growth of thin films, Rep. Phys, 47, 339-459 ,(1984).
91.S. Mahamuni, K. Borgohan, B. S. Bendre, V. J. Leppert and S. H. Risbud, “Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots”,J. Appl. Phys, 85, 2861,(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top