跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴昱廷
研究生(外文):Yu-Ting Lai
論文名稱:木賊麻黃與千歲蘭葉綠體基因組:探討買麻藤的葉綠體基因組演化及譜系親緣關係
論文名稱(外文):Complete Chloroplast Genomes (cpDNAs) of Ephedra equisetina and Welwitschia mirabilis: Insights into CpDNA Evolution and Phylogeny of Gnetophyta
指導教授:趙淑妙趙淑妙引用關係
指導教授(外文):Shu-Miaw Chaw
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
中文關鍵詞:gymnospermsphylogenygnetophyteschloroplast genomecompactnesssubstitution rate
外文關鍵詞:裸子植物親緣關係買麻藤葉綠體基因組緊密替換率
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
買麻藤與其他現生四大種子植物門(蘇鐵、銀杏、松柏及被子植物)之間的譜系關係仍有爭議。我們定序木賊麻黃(Ephedra equisetina)及千歲蘭(Welwitschia mirabilis)的葉綠體基因體序列,並與已知數據合併分析。木賊麻黃(109,518bp)與千歲蘭(118,919bp)的葉綠體基因組序列皆為環狀,含有一對典型的逆轉重複區(inverted-repeats, IRs)。我們分析50種陸生植物共有的58個葉綠體蛋白質編碼基因的DNA序列,並以三種方法重建陸生植物的親緣關係樹。所有樹形皆支持現生種子植物為單系群,裸子植物可細分成蘇鐵-銀杏與松柏-買麻藤兩姐妹群,且麻黃是買麻藤中最早分歧的支系群;此外,買麻藤支系群的樹枝長度較長,推究其演化速率較快可能是使用相對較高的AT-rich密碼子所導致。與蘇鐵葉綠體基因組比較,買麻藤門支系群具有獨特的基因排序,例如:大單拷貝區的tRNA聚集區、逆轉重複區trnN-GUU的轉位與小單拷貝區rps15−psaC片段的轉位,這些證據加強其為單系群的推論。由於基因丟失、基因間區及內含子長度緊縮與基因密度提高,買麻藤門的葉綠體基因組是已知行光合作用的維管束植物中最緊密的,總結以上結果,買麻藤運用經濟化使用遺傳物質的策略來適應惡劣環境,因此演化出小且緊實的葉綠體基因組。
Relationships among Gnetophyta (gnetophytes) and other four extant seed plant divisions—Cycadophyta (cycads), Ginkgophyta (ginkgo), Coniferophyta (conifers), and Magnoliophyta (angiosperms), have been highly debated in the past decade. To resolve this issue, complete chloroplast genomes (cpDNAs) of Ephedra equisetina and Welwitschia mirabilis were determined and analyzed along with available 48 elucidated cpDNAs. The cpDNAs of E. equisetina (109,518 bp) and W. mirabilis (118,919 bp) are circular and have a typical pair of inverted-repeats (IRs). We reconstructed the seed plant phylogenies basing on 58 chloroplast protein-coding genes common to the known 50 cpDNAs with three different methods. The three phylogenetic trees congruently resolved the monophyly of extant seed plants and two subclades within gymnosperms-the cycads-ginkgo and the conifers-gnetophytes. In gnetophytes, Ephedra stands in the basal-most position. Remarkably, the branches of three gnetophytes are relatively long. We demonstrated that the accelerated substitution rates of gnetophytes are caused by the significantly elevated bias usages of AT-rich codons. Compared with the cpDNA organization of Cycas, the three gnetophytes have unique gene orders, e.g., an aggregation of 10−12 tRNA genes in the large single copy, a flip-over of trnN-GUU in IRs, and an inversion of rps15−psaC in the small single copy). These findings provide robust supports for the monophyly of gnetophytes. Interestingly, the cpDNAs of gnetophytes are the smallest and most compact yet reported in the photosynthetic vascular plants. The smallness is due to many gene loss, reduced intergenic spaces, and shrink introns. In other words, the gnetophyte cpDNAs have higher gene densities and percentages of coding regions. We hypothesize that economical utilization of genetic materials against their harsh environments might explain why gnetophytes have to evolve toward small and compact cpDNAs.
TABLE OF CONTENTS
PAGE
Abstract i
中文摘要 iii

1 Introduction 1
2 Materials and Methods 8
2.1 PCR Amplification and CpDNA Sequencing 8
2.2 Gene Annotation 9
2.3 Dot-plot Analyses 9
2.4 Amplification of rbcL–atpA among gnetophytes 9
2.5 Sequence Alignments and Reconstruction of Phylogenies 10
2.6 Comparison of CpDNA Characteristics and Codon Usages 11
3 Results 12
3.1 Characteristics and Organizations of the CpDNAs of Ephedra 12
equisetina and Welwitschia mirabilis
3.1.1 Characteristics 12
3.1.2 TrnR-CCG is duplicated in the cpDNA of Welwitschia 13
mirabilis
3.1.3 Two isoforms of cpDNAs of Welwitschia mirabilis 13
3.2 The CpDNAs of Gnetophytes Are Small with Compact Genomic 14
Organizations, Especially the Ephedra
3.2.1 Fifteen genes have been lost from the common ancestral 14
cpDNA of gnetophytes
3.2.2 The cpDNAs of three gnetophyte lineages have higher 14
proportions of coding sequences and gene densities
3.3 Monophylies of Seed Plants, Gymnosperms, and Gnetophytes, 16
Were Supported, Respectively
3.4 Patterns of Gene Loss in Vascular Plants 17
3.5 Different Patterns of IR-Single Copy Region (IR-SC) Boundaries 18
between Gymnosperms and Angiosperms
3.5.1 Diverse patterns of IR-SC boundaries in gymnosperms 18
and angiosperms
3.5.2 Different IR-SSC boundaries in the gnetophyte cpDNAs 18
3.6 The Protein-coding Genes of Gnetophyte CpDNAs Have 19
Accelerated Evolutionary Rates
4 Discussion 20
4.1 Two Haplotypes of CpDNAs in Welwitschia mirabilis 20
4.2 An Economical Utilization of Genetic Materials in Gnetophyte 20
cpDNAs?
4.3 CpDNA Reorganizations: Architectural Characters Support 24
Phylogenies of Major Lineages within Seed Plants
4.3.1 Patterns of IR-LSC junctions support the monophylies of 24
angiosperms and gymnosperms
4.3.2 Unique structural characteristics that support the monophyly 25
of gnetophytes
4.4 A Two-step Inversion Model for the Aggregation of the 10−12 25
tRNA in the Gnetophyte CpDNAs
4.5 What Is the Evolutionary Significance of the Aggregation of the 26
10-12 tRNA Genes?
4.6 Specific Loss of Genes nearby the IR-SSC Junctions in 26
Gnetophyte CpDNAs
5 References 28
6 Figures and Legends 40
7 Tables 51
8 Supplementary Data 57
9 Appendixes 65
Akashi K, Takenaka M, Yamaoka S, Suyama Y, Fukuzawa H, and Ohyama K. 1998. Coexistence of nuclear DNA-encoded tRNAVal(AAC) and mitochondrial DNA-encoded tRNAVal(UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Res. 26:2168–2172.
Albert VA, Backlund A, Bremer K, Chase MW, Manhart JR, Mishler BD, Nixon KC. 1994. Functional constraints and rbcL evidence for land plant phylogeny. Ann Mo Bot Gard. 81:534–567.
Armstrong MT, Theg SM, Braun N, Wainwright N, Pardy RL, Armstrong PB. 2006. Histochemical evidence for lipid A (endotoxin) in eukaryote chloroplasts. FEBS J. 20:2145–6.
Baker NR, J Harbinson and DM Kramer. 2007. Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell and Enviro. 30:1107–1125.
Barbrook AC, Howe CJ, and Purton S. 2006. Why are plastid genomes retained in non-photosynthetic orgenisms? Trends Plant Sci. 11:101–108.
Basu MK, Rogozin IB, Deusch O, Dagan T, Martin W, Koonin EV. 2008. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. Mol Biol Evol. 25:111–119
Benson L and Darrow RA. 1981. Trees and Shrubs of the Southwest Deserts. Tucson, AZ: University of Arizona Press. p. 68.
Berry EA, Guergova-Kuras M, Huang LS and Crofts AR. 2000. Structure and function of cytochrome bc complexes. Annu Rev Biochem. 69:1005–75.
Bierhorst DW. 1971. Morphology of vascular plants. Macmillan, New York, New York, USA
Bogorad L. 1975. Evolution of organelles and eukaryotic genomes. Science. 188:891–898.
Bornman CH. 1972. Welwitschia mirabilis: observations on general habitat, seed, seedling, and leaf characteristics. Madoqua. 11:53–56.
Bornman CH. 1977. Welwitschia mirabilis: structural and functional anomalies. Madoqua. 10:21–31.
Bornman CH.1972. Welwitschia mirabilis: observations on general habitat, seed, seedling, and leaf characteristics. Madoqua. 11:53–56.
Bowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci USA. 97:4092–4097.
Burleigh JG, Mathews S. 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Am J Bot. 91:1599–1613.
Carmichael JS, and Friedman WE. 1995. Double fertilization in Gnetum gnemon: the relationship between the cell cycle and sexual reproduction. The Plant cell. 7:1975–1988.
Caveney S, Charlet DA, Freitag H, Maier–Stolte Mand, and Starratt AN. 2001. New observations on the secondary chemistry of world Ephedra (Ephedraceae). Am J Bot. 88:1199–1208.
Chamberlain CJ. 1935. Gymnosperms, structure and evolution. The University of Chicago Press, Chicago, Illinois, USA.
Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, and Chaw SM. 2005. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol.23:279–291.
Chaw SM, Chang CC, Chen HL, and Li WH. 2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol. 58:424–441.
Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA. 97:4086–4091.
Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol. 14:56–68.
Crane PR. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard. 72:716–793.
Cutler HC. 1939. Monograph of the North American species of the genus Ephedra. Ann Mo Bot Gard. 26:373–427.
Daley DO, and Whelan J. 2005. Why genes persist in organelle genomes. Genome Biol. 6:110.
de Grey ADNJ. 2005. Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity? BioEssays. 27:436–446.
Doyle JA and Donoghue JM. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Rev. 52:321–431.
Doyle JA and Donoghue MJ. 1992. Fossils and seed plant phylogeny reanalyzed. Brittonia. 44:89–106.
Doyle JA. 1998. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. Mol Phyl Evol. 9:448–462.
Doyle JA.1996. Seed plant phylogeny and the relationships of Gnetales. Int J of Plant Sci. 157:S3–S39.
Duret L. 2000. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16:287–289.
Field TS and Balun L. 2008. Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytologist. 177:665–675.
Friedman WE. 1990 Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science. 247:951–954.
Fu LK, Yu YF, and Riedl H. 1999. Ephedraceae. In: Wu CY and Raven PH. eds. Flora of China. Vol. 4. Science Press, Beijing, China, p. 98.
Funk HT, Berg S, Krupinska K, Maier UG, and Krause K. 2007. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol. 7:45–54.
Gallois JL, Achard P, Green G, and Mache R. 2001. The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin. Gene. 274:179–185.
Gifford EM and Foster AS. 1989. Morphology and Evolution of Vascular Plants. , W.H. Freeman, New York.
Glover KE, Spencer DF, and Gray MW. 2001. Identification and structural characterization of nucleus-encoded transfer RNA imported into wheat mitochondria. J Bio Chem. 276:639–648.
Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W. 1996. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol Biol Evol. 13:383–396.
Graur, D and Li WH. 2000. Rates and patterns of nucleotide substitution. p. 99–164. in Graur D, and Li WH, eds. Fundamentals of Molecular Evolution. Sinauer Associates, USA.
Gruissem W, Elsner–Menzel C, Latshaw S, Narita JO, Schaffer, M.A. and Zurawski G. 1986. A subpopulation of spinach chloroplast tRNA genes does not require upstream promoter elements for transcription. Nucleic Acids Res. 14:7541–7556.
Gruissem W, Zurawski G. 1985. Analysis of promoter regions for the spinach chloroplast rbcL, atpB and psbA genes. EMBO J. 4:3375–3383.
Gugerli F, Sperisen C, Büchler U, Brunner I, Brodbeck S, Palmer JD, Qiu YL. 2001. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phy Evol. 21:167–175.
Hamby RK, Zimmer EA. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ, editors. Molecular systematics of plants. New York: Chapman and Hall. p. 50–91.
Herbeck JT, Wall DP, and Wernegreen JJ. 2003. Gene expression level influences amino acid usage, but not codon usage, in the tsetse fly endosymbiont Wigglesworthia. Microbiology. 149:2585–2596.
Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, and Meng BY. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet. 217:185–194.
Ivanov LA, Ivanova LA, Ronzhina DA, Chechulin ML, Tserenkhand G, Gunin PD, and P'yankov VI. 2004. Structural and functional grounds for Ephedra sinica expansion in Mongolian steppe ecosystem. Rus J Plant Physiol. 51:469–475.
Judd WS. 2002. Plant Systematics: A Phylogenetic Approach, 2nd Ed. Sunderland, MA: Sinauer Associates, Inc.
Kers LE. 1967. The distribution of Welwitschia mirabilis Hook.f. Sven Bot Tidskr. 61:97–125.
Kramer DM, TJ Avenson1 and GE. Edwards. 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 9:349–357.
Kumar R, Marechal-Drpiard L, Akama K, Small I. 1996. Striking differences in mitochondrial tRNA import between different plant species. Mol. Gen. Genet. 252:404–411.
Leuenberger BE. 2001. Welwitschia mirabilis (Welwitschiaceae), male cone characters and a new subspecies. Willdenowia. 31:357–381.
Loconte H and Stevenson DW. 1990. Cladistics of the Spermatophyta. Brittonia. 42:197–211.
Lowe TM and Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964.
Maple J and Møller SG. 2007. Plastid division: evolution, mechanism and complexity. Ann Bot. 99:565–579.
Margulis L. 1970. Origin of Eukaryotic Cells. Yale Univ. Press, New Haven, p. 349.
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. 2003. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 99:12246–12251.
Mathews CK, Van Holde KE and Ahern KG. 2000. Nucleotide Metabolism. p.794–829. in Mathews CK, Van Holde KE and Ahern KG, edt. Biochemistry. Addison Wesley Longman.
Mathews DE and Durbin RD. 1990. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplast and Escherichia coli. J Bio Chem. 265:493–498.
McCoy SR, Kuehl JV, Boore JL, and Raubeson LA. 2008. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol. 8:130–145.
Mereschkowsky C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25:593–604. [English translation Eur. J. Phycol. 34:287–295, 1999]
Morton JF. 1977. Ephedra, In: Major Medicinal Plants - Botany, Culture and Uses. Charles C. Thomas Publishers.
Mullet JE. 1993. Dynamic regulation of chloroplast transcription. Plant Physiol. 103:309–313.
Mulo P, Pursiheimo S, Hou C-X, Tyystjärvi T and Aro E-M. 2003. Multiple effects of antibiotics on chloroplast and nuclear gene expression. Functional Plant Biol. 30:1097–1103.
Nickerson J and Drouin G. 2004. The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. Mol Phy Evol. 41:403–415.
Nixon KC, Crepet WL, Stevenson D, and Friis EM. 1994. A reevaluation of seed plant phylogeny. Ann Mo Bot Gard. 81:484–533.
Oelmuller R, Levitan I, Bergfeld R, Rajasekhar VK, Mohr H. 1986. Expression of nuclear genes as affected by treatments acting on plastids. Planta. 168:482–492.
Perry AS, Brennan S, Murphy DJ, Kavanagh TA, and Wolfe KH. 2002. Evolutionary re-organization of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement. DNA Res. 9:157–162.
Posada D and Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics. 14:817–818.
Price RA. 1996. Systematics of the Gnetales: a review of morphological and molecular evidence. Int. J. Pl. Sci. 157:S40–S49.
Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC. 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA. 103:15511–15516.
Rapp JC and Mullet JE. 1991. Chloroplast transcription is required to express the nuclear genes rbcS and cab. Plastid DNA copy number is regulated independently. Plant Mol Biol. 17:813–823.
Raubeson LA, Jansen RK. 2005. Chloroplast genomes of plants. In: Henry RI, editor. Plant diversity and evolution: genotypic and phenotypic variation in higher plants. Wallingford (UK): CABI. p. 45–68.
Rodin RJ. 1953. Leaf anatomy of Welwitschia. I. Early development of the leaf. Am. J. Bot. 45:90–95.
Ronquist F and Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–1574.
Rothwell GR and Serbet R. 1994. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Systematic Bot. 19:443–482.
Rydin C, Källersjö M, Friis EM. 2002. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int J Plant Sci. 163:197–214.
Rydin C, Pedersen KR, Crane PR, and Friis EM. 2006. Former diversity of Ephedra (Gnetales): evidence from Early Cretaceous seeds from Portugal and North America. Ann Bot. 98:123–140.
Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, and Jansen RK. 2005. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Mol Biol. 59:309–322.
Schmidt M, Schneider-Poetsch HAW. 2002. The evolution of gymnosperms redrawn by phytochrome genes: the Gnetatae appear at the base of the gymnosperms. J Mol Evol. 54:715–724.
Sharp, PM and Li WH. 1989. On the rate of DNA sequence evolution in Drosophila. J. Mol. Evol. 28:398–402.
Soltis PS, Soltis DE, Savolainen V, Crane PR, and Barraclough TG. 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci USA. 99:4430–4435.
Stevenson DW. 1993. Ephedraceae. Flora of North America Editorial Committee (eds.): Flora of North America North of Mexico, Vol. 2. Oxford University Press.
Stewart CN Jr and Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 14:748–750.
Stewart WN, Rothwell GW. 1993. Paleobotany and the evolution of plants, eds. Cambridge: Cambridge University Press. p. 521.
Strauss SH, Palmer JD, Howe GT, and Doerksen AH. 1988. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc Natl Acad Sci USA. 85:3898–3902.
Sullivan JA and Gray JC. 1999. Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. The Plant Cell. 11:901–910.
Tamura K, Dudley J, Nei M, and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol. 24:1596–1599.
Tamura K, Nei M and Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 101:11030–11035.
Tarassov IA and Entelis NS. 1992. Mitochondrially-imported cytoplasmic tRNALys(CAU) of Saccharomyces cerevisiae: In vivo and in vitro targeting system. Nucleic Acids Res. 20:1277–1281.
Tarassov IA and Martin RP. 1996. Mechanism of tRNA import into yeast mitochondria: An overview. Biochemie. 78:502–510.
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408:796–815.
The Rice Chromosome 10 Sequencing Consortium.2003. In-depth view of structure, activity, and evolution of rice chromosome 10. Science. 300:1566–1569.
Timmis JN, Ayliffe MA, Huang CY and Martin W. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat R Genet. 5:123–135.
Tsudzuki T, Wakasugi T, and Sugiura M. 2001. Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol. 53:327–332.
Tsumura Y, Suyama Y, and Yoshimura K. 2000. Chloroplast DNA inversion polymorphism in populations of Abies and Tsuga. Mol Biol Evol. 17:1302–12.
Tyystjärvi E and Aro E-M. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA. 93:2213–2218.
von Willert DJ and Wagner-Douglas U. 1994. Water relations, CO2 exchange, water use efficiency and growth of Welwitschia mirabilis Hook. fil. in three contrasting habitats of the Namib Desert. Botanica Acta 107:291–299.
Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA. 91:9794–9798.
Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM and Chaw SM. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol. 8:36–49.
Wang ZO. 2004. A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny. Ann Bot. 94:281–288.
Wilson RJM. 2005. Parasite plastids: approaching the endgame. Biol Rev Camb Philos Soc. 80:129–153.
Wolfe KH, Morden CW, and Palmer JD. 1992. Small single-copy region of plastid DNA in the non–photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol. 223:95–104.
Wu CS, Wang YN, Liu SM, and Chaw SM. 2007. Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol. 24:1366–1379.
Wu CY, Lin CH, and ChenLJ. 1997. Identification of the transcription start site for the spinach chloroplast serine tRNA gene. FEBS Lett. 418:157–161.
Wyman SK, Boore JL, Jansen RK. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 20:3252–3255.
Xia X and Xie Z. 2001. DAMBE: Data analysis in molecular biology and evolution. J Hered. 92:371–373.
Yang Y. 2004. Ontogeny of triovulate cones of Ephedra intermedia and origin of the outer envelope ofovules of Ephedraceae. Am J Bot. 91:361–368.
Yuan Q, Hill J, Hsiao J, Moffat K, Ouyang S, Cheng Z, Jiang J and Buell C. 2002. Large part of cpDNA chunk integrate the nuclear chromosomes. Mol Genet Genom. 267:713–720.
Zauner S, Greilinger D, Laatsch T, Kowallik KV, and Maier UG. 2004. Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett. 577:535–538.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top