跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯宏誼
研究生(外文):Hung-yi Hou
論文名稱:異丙苯過氧化氫熱分解反應行為之研究
論文名稱(外文):Studies on the Thermal Decomposition Reaction of Cumene Hydroperoxide
指導教授:徐啟銘徐啟銘引用關係
指導教授(外文):Chi-Min Shu
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:117
中文關鍵詞:失控反應有機過氧化物異丙苯過氧化氫不相容性反應機構
外文關鍵詞:incompatiblerunaway incidentscumene hydroperoxidedecomposition mechanism
相關次數:
  • 被引用被引用:16
  • 點閱點閱:1551
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
異丙苯過氧化氫 (Cumene hydroperoxide, CHP) 由於本身結構具有較弱的過氧基和過氧化氫基,使得CHP的反應性極為不穩定,熱分解過程中易與其它物質鍵結,引發連鎖反應,反應過程中若無法將過多的熱能或氣體排出,則可能引發火災爆炸等失控反應。另外,CHP於鹼性溶液環境中分解時容易生成有經濟價值的含氧化合物,如異丙苯醇、苯乙酮、��-甲基苯乙稀、過氧化二異丙苯及其他具經濟價值的產物。基本上,CHP為一典型的有機過氧化物,具有對熱敏感性、反應性及許多不相容物的不相容反應性,因此,失控反應的意外可能發生在氧化槽、真空濃縮反應器或儲存槽中。故CHP在美國國家防火協會的432法規中歸類為易燃性物質。
本研究使用熱卡計DSC, TAM III及VSP2測量CHP的熱危害及不相容性,定義CHP於不同的氫氧根離子化合物中的潛在危害性質,比較熱危害及絕熱失控數據、放熱起始溫度、反應熱自加速昇溫速率、昇壓速率、絕熱狀態下到達最大反應速率的時間等不相容性危害,皆於此研究中得到嚴格的驗證與評估。另外,配合色層分析及光譜分析技術,利用質譜儀GC/MS對反應產物進行定性分析,分析CHP本身及鹼性溶液製程中熱分解的主要產物,結合IR光譜儀的官能基變化分析,以推估反應機構。最後預期建立熱分解及鹼性溶液催化產物相對位能圖、反應機構,探討熱分解過程中熱危害行為與反應機構之關連性,此結果可提供石化業在製造CHP相關衍生物時製程安全改善或最佳化之參考依據。
The decomposition of cumene hydroperoxide (CHP) by its relatively weak oxygen linkage and hydroperoxide radical in the presence of alkaline solution is one of the promising routes in the preparation of valuable oxygen containing compounds, such as ��-cumyl alcohol (CA), acetonphenol (AP), and ��-methylstyrene (AMS), dicumyl peroxide (DCPO) and any other economically attractive products. Basically, CHP is intrinsically unstable and reactive upon exposure to heat and incompatible with many incompatibilities, therefore, runaway incidents may occur in oxidation reactors, vacuum condensation reactors, or storage tanks. The classification description of CHP in NFPA 432 was a kind of flammable material.
The thermal hazards and incompatibilities of CHP were conducted by the calorimeters, differential scanning calorimeter (DSC), thermal activity monitor3 (TAM III), and vent sizing package 2 (VSP2), to characterize the inherent behaviors of CHP in the presence of various hydroperoxides. Comparisons of thermal hazard and adiabatic runaway data, exothermic onset temperature, heat of decomposition, self-heat rate, pressure rise rate, time to maximum rate under adiabatic condition (TMRad), etc, were assessed to verify the severity of incompatible hazards in these systems. In addition, chromatography technology, and mass spectrometry (GC/MS) were utilized to resolve the final products after thermal decomposition and used to construct the decomposition mechanism of these differently reactive systems, combined with essential radical produced analysed by Infared spectrometry (IR) during various decomposition system.Various products corresponded to relative potential energy are proposed and reaction mechanism are to be examined. Major components or intermediate which devote itself to the largest heat releasing step will be suggested and verified. These results are essentially important in process safety design for producing CHP and its derivatives.
目 錄


中文摘要 ------------------------------------------------------------------i
英文摘要 -----------------------------------------------------------------ii
致謝 ----------------------------------------------------------------iii
目錄 ----------------------------------------------------------------iv
表目錄 ----------------------------------------------------------------vi
圖目錄 ----------------------------------------------------------------vii
符號說明 ----------------------------------------------------------------ix
第一章、 緒論--------------------------------------------------------------1
1.1 研究背景----------------------------------------------------------1
1.2 研究目的----------------------------------------------------------4
第二章、 文獻回顧----------------------------------------------------------5
2.1 熱分解反應危害----------------------------------------------------5
2.2 反應分解機制------------------------------------------------------9
第三章、 過氧化物特性-----------------------------------------------------15
3.1 有機過氧化物特性-------------------------------------------------15
3.2 有機過氧化物熱危害評估-------------------------------------------18
3.3 異丙苯過氧化氫基本性質-------------------------------------------19
3.4 異丙苯過氧化氫上下游工業製程-------------------------------------21
第四章、 實驗方法---------------------------------------------------------24
4.1 研究流程---------------------------------------------------------24
4.2 實驗設備及原理---------------------------------------------------25
4.3 實驗藥品---------------------------------------------------------31
4.4 操作流程---------------------------------------------------------31
4.4.1 多頻道微量熱卡計恆溫熱掃瞄試驗-----------------------------------31
4.4.2 微差掃瞄熱卡計實驗-----------------------------------------------32
4.4.3 緊急排放安全處理儀實驗-------------------------------------------33
4.4.4 氣相層析質譜儀 (GC/MS) 定性分析實驗------------------------------33
4.4.5 紅外線光譜儀(IR)定性分析實驗-------------------------------------34
第五章、 結果與討論-------------------------------------------------------36
5.1 異丙苯過氧化氫放熱行為之研究-------------------------------------36
5.1.1 DSC恆溫熱失控危害研究--------------------------------------------36
5.1.2 TAM III恆溫熱失控危害研究----------------------------------------37
5.2 異丙苯過氧化氫於鹼性溶液製程中的反應性研究-----------------------46
5.2.1 DSC熱失控分解掃描(實驗方法一)----------------------------------46
5.2.2 DSC熱失控分解掃描(實驗方法二)----------------------------------51
5.2.3 VSP2絕熱失控危害評估---------------------------------------------57
5.2.4 CHP於鹼性溶液製程的分解產物光譜分析------------------------------65
5.3 CHP熱分解動力學探討----------------------------------------------72
5.3.1 恆溫分解動力學---------------------------------------------------72
5.3.2 絕熱昇溫模擬-----------------------------------------------------76
第六章、 結論與建議-------------------------------------------------------79
6.1 結論-------------------------------------------------------------79
6.2 建議-------------------------------------------------------------80
參考文獻 82
附錄 85
��1�� J. R. Thomas, “The thermal decomposition of alkyl hydroperoxides”, Journal of the American Chemical Society, Vol. 77, (1955) 246-248.
��2�� Y. S. Duh, C.-S. Kao, H.-H. Hwang, W.-L. Lee, “Thermal decomposition kinetics of cumene hydroperoxide”, Trans. IChemE, 76 (Part B) (1998) 271-276.
��3��Y. Yu, K. Hasegawa, Derivation of the self-accelerating decomposition temperature for self-reactive substances using isothermal calorimetry, J. Hazard. Mater. 45 (1996) 193–205.
��4��Y. W. Wang, C.M. Shu, Y.S. Duh, C.S. Kao, Thermal runaway hazards of cumene hydroperoxide with contaminants, Ind. Eng. Chem. Res. 40 (2001) 1125–1132.
��5��H. Y. Hou, C.M. Shu, Y.S. Duh, 2001, Exothermic decomposition of cumene hydroperoxide at low temperature conditions, AIChE J. 47, 8 (2001) 1893–1896.
��6��X. R. Li, H. Koseki, Thermal decomposition kinetic of liquid organic peroxides, J. Loss Prev. Process Ind. 18 (2005) 460–464.
��7��M. S. Kharasch, A.Fono, and W. Nudenberg, “The chemistry of hydroperoxide. Ⅵ. The thermal decomposition of α-cumyl hydroperoxide”, J. Org. Chem. Vol.15, (1950) 113-127.
��8��G.. J. Suppes, M.A. McHugh, Solvent and catalytic metal effects on the decomposition of cumene hydroperoxide, Ind. Eng. Chem. Res. 28 (1989) 1146–1152.
��9��A. S. Lyavinets, Reaction of cumene hydroperoxide in strongly basic media, Russian J. Phys. Chem. 74 (2000) 1072–1076.
��10��R.Hiatt, J. Clipsham, and T. Visser, “The induced decomposition of tert-butyl hydroperoxide”, Can. J. Chem., vol.42, (1964) 2754-2757.
��11��R. Hiatt, T. Mill, C. Irwin and J. K. Castelman, J. Org. Chem. Vol. 33 (1968) 1421.
��12��K. M. Luo, J. G. Chang, S. H. Lin, C.T. Chang, T. F. Yeh, K. H. Hu and C. S. Kao, ”The criterion of critical runaway and stable temperature in cumene hydroperoxide reaction”, Journal of Loss Prevention in the Process Industries, 14 (2001) 229-239.
��13�� M.E. Levin, N.O. Gonzales, L.W. Zimmerman, J.Yang, Kinetics of acid-catalyzed cleavage of cumene hydroperoxide, J. Hazard. Mater. 130 (2005) 88–106.
��14�� U.N. Recommendations on the Transport of Dangerous Goods, United Nations Publications: Geneva, Switzerland, 13rd Edition, Vol. 1 (2003) 104.
��15�� P. Y. Yeh, C. M. Shu and Y. S. Duh, Ind. Eng. Chem. Res. Vol. 42 (2003) 1-5.
��16�� T. C. Ho, Y. S. Duh, and J. R. Chen,. AIChE Loss Prevention Symposium, Paper 6F (1998) 1–9.
��17�� D. E. Clark, Chem. Heal. Saf., September/October (2001).
��18�� T. A. Kletz, Plant/Oper. Prog., Vol. 7, (1988) 226-30.
��19�� National Fire Protection Association, Code for the Storage of Organic Peroxide Formulations, NFPA 432, National Fire Protection Association, Minneapolis, MN, USA. (2005).
��20�� S. S. Shashin and O. N. Emanuel, Izv. Akad. Nauk SSSr, Ser. Khim. (1987) 534–38.
��21�� J. J. Zwolenik, J. Phys. Chem. Vol. 8, No. 8 (1966) 2464-69.
��22�� A. A. Aldeeb, W.J. Rogers, M.S. Mannan, J. Hazard. Mater. Vol. 104 (2003) 269–282
��23�� T. Kotoyori, “The Self-accelerating Decomposition Temperature(SADT) of Solids of the Quasi-autocatalytic Decomposition Type”, J. of Hazardous materials A vol.64 (1999) 1-19.
��24�� Selvin, R., Rajarajeswari, G. R., Roselin, L. S., Sadasivam, V., Sivasankar, B., Rengaraj, K., “Catalystic decomposition of cumene hydroperoxide into phenol and acetone”, Applied Catalysis A: General, vol. 219 (2001) 125-129.
��25��B. Perrenot and G. Widmann, 1991, “TG and DSC Kinetics of Thermal Decomposition and Crystallization Processes”, Journal of Thermal Analysis, Vol. 37, pp. 1785∼1792.
��26��J. H. R. Casemier, B. E. Nieuwenhuys, and W. M. H Sachtler, 1973, “The Oxidation of Cumene and the Decomposition of Cumene Hydroperoxide on Silver, Copper, and Platinum”,. J. Catal., Vol. 29, pp. 367.
��27��J. H. R. Casemier, B. E. Nieuwenhuys, and W. M. H. Sachtler, 1973, “The Oxidation of Cumene and the Decomposition of Cumene Hydroperoxide on Silver, Copper, and Platinum”. J. Catal, Vol. 29, pp. 367.
��28��Sima Chervin and Glenn T. Bodman, 1999, “Phenomenon of autocatalysis in Decomposition of Energetic Chemicals”. The 1st International Conference, Methodology of Reaction Hazards Investigation and Vent Sizing, Russia.
��29��T. Ando, Y. Fujimoto and S.Morisaki, 1991, ”Analysis of Differential Scanning Calorimetric Data for Reactive Chemicals”, Journal of Hazardous Materials, Vol. 28, pp. 251-280.
��30��Yuhua Yu and Kazutoshi Hasegawa, 1996, “Derivation of the Self-accelerating Decomposition Temperature for Self-reactive Substances using Isothermal Calorimetry”, Journal of Hazardous Materials, 45, pp.193-205.
��31��行政院環境保護署 毒性化學物質網路申報系統,2001,HSN-254 http://flora2.epa.gov.tw/prog/database.asp.
��32��Huang, D., Han, M., Wang, J., “Catalytic decomposition process of cumene hydroperoxide using sulfonic resins as catalyst”, Chemical Engineering Journal, vol. 88 (2002) 215-223.
��33�� Annandale, N. J., “Cumene hydroperoxide explosion”, Chemical & Engineering News, vol. 71 (1993) 4.
��33�� Buelna, G., Nenoff, T. M., 2005, “A One-step catalytic separation process for the production of cumene”, Catalysis Letters, vol. 102, pp. 285-288, August.
��34��奇美實業,2005; Acrylonitrile butadiene styrene – Wikipedia,
http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene
��35�� H.Y. Hou, Y.S. Duh, W.H. Lin, C.M. Shu, Reactive incompatibility of cumene hydroperoxide mixed with alkaline solutions, J. Therm. Anal. Cal. 85 (2006) 145–150.
��36�� H.Y. Hou, T.S. Liao, Y.S. Duh, C.M. Shu, Thermal hazard studies for dicumyl peroxide by DSC and TAM, J. Therm. Anal. Cal. 83 (2006) 167–171.
��37��王義文,1999,異丙苯過氧化氫不相容性之熱危害分析,國立雲林科技大學,碩士論文。
��38��蔡東霖,2006,異丙苯過氧化氫與氫氧化鈉分解反應之研究,國立雲林科技大學,碩士論文。
��39��黃河樺,1998,異丙苯過氧化氫熱危害分析與熱分解反應機制探討,國立雲林科技大學,碩士論文。
��40��陳美玲,杜逸興,柏雅玲,1994,有機過氧化物之熱危害評估,工研院工安衛中心,新竹。
��41��陳美玲,杜逸興,楊媛菁,1994,異丙苯過氧化氫熱危害測試,工研院工安衛中心,新竹。
��42��杜逸興,高振山,1996,“失控反應危害評估與應用”,化工技術月刊,頁139∼148,1月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top