跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳興松
研究生(外文):Hsing-sung Chen
論文名稱:複合材料加速疲勞特性之研究
論文名稱(外文):Accelerated Fatigue Properties of Unidirectional Composite Materials
指導教授:黃順發黃順發引用關係
指導教授(外文):Shun-Fa Hwang
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:121
中文關鍵詞:疲勞粘彈性應力頻率應力比S形S-N曲線疲勞損傷兩階段應力
外文關鍵詞:fatigueloading frequencystress ratiocompos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:567
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
利用高分子材料為基材的複合材料已被證實在低於玻璃轉換溫度的環境亦具有粘彈性的行為,因此可利用此觀念經由改變應力比、頻率來進行加速疲勞測試。本研究探討碳纖維及玻璃纖維複合材料因粘彈性造成的的加速疲勞特性,並建立模型來預估其疲勞壽命及其疲勞損傷累積的狀況。
為此本研究利用碳纖維/環氧樹脂及玻璃纖維/環氧樹脂複合材料的不同角度單方向疊層試片,在試片溫度控制為室溫,改變應力大小、應力頻率及應力比的條件下,完成一系列的疲勞試驗。並利用此結果建立一可適當描述其整個疲勞壽命的S形的S-N曲線,並建立其不同應力頻率及應力比相對應之S-N曲線間的轉換關係。並利用此關係配合一參考的S-N曲線作轉換,以估計得到任何指定的應力頻率及應力比條件下的相對應S-N曲線,並利用此曲線評估其疲勞壽命。文中亦將所得結果與直線形曲線結果加以比較,證實後者在全壽命疲勞描述時有較優之結果。
此外本研究亦基於複材損傷成長的物理現象,在考慮應力頻率及應力比對其疲勞損傷的非線性影響情況下,建立一非線性的疲勞損傷模型。文中並定義一個疲勞損傷指標來評估疲勞損傷的大小,建立其評估的數學模型並求出其相應之參數。最後並以兩階段應力實驗來驗證此模型的可用性。此驗證結果證實此模型與實驗結果非常相近。
It has been confirmed that polymer matrix composites possess viscoelastic behavior. This means that one could accelerate the fatigue testing by changing the stress amplitude, frequency or temperature. This study is to invest the accelerated fatigue properties, which resulted from the viscoelastic behavior, of carbon/epoxy and glass/epoxy composites and to predict their fatigue life. For this purpose, a series of fatigue tests of unidirectional specimens are conducted at room temperature under different stress ratios and stress frequencies. A group of sigmoid S-N curves which are suitable for the whole fatigue life and the corresponding parameters are developed for different cyclic loading conditions. A transformation method, which can transform a reference S-N curve to the corresponding S-N curve of the assigned fatigue conditions, is established by the parameters. And this S-N curve can be utilized to predict the fatigue life of the composite at the assigned stress ratio or stress frequency. The comparison between the linear and sigmoid S-N curves is also carried out to show the advantages of the latter model in the whole fatigue life. Following, a nonlinear damage model, which was based on a physical phenomenon of damage growth, for the composites that includes the nonlinear effects of stress ratio and loading frequency on the damage processes was developed. A damage index was defined and the corresponding parameters were decided. A series of two-stress level fatigue tests were conducted to confirm the validity of this model. The results reveal that the model of this study is benefit to assess the fatigue damage caused by different stress ratios and frequencies.
Contents
Page
Abstract (Chinese)……………………………………………………………I
Abstract (English)……………………………………………………………II
Acknowledgment (Chinese) ……………………………………………………………IV
Notation…………………………………………………V
Contents…………………………………………………VI
Tables..……………………………………………………………VII
Figures..……………………………………………………………IX
Chapter 1 Introduction……………………………………………1
1.1 Introduction……………………………………………1
1.2 Literature Review……………………………………………………2
1.3 Study Purpose………………………………………………… 7
Chapter 2 Experimental Details………………………………………………… 8
Chapter 3 S-N Curve…………………………………………………… 15
3.1 Linear S-N Curve ……………………………………………………………16
3.2 Sigmoid S-N Curve ……………………………………………………………17
3.3 Transformation of the S-N Curve ……………………………………………………………18
3.4 Results and Discussions ……………………………………………………18
3.4.1 Comparison of the Linear and Sigmoid S-N Curves ………………………………………………… 19
3.4.2 The results of specimens ……………………………………20
3.4.3 The results of specimens…………………………………21
3.4.4 Observations and discussions……………………………………22
3.4.5 Prediction Process………………………………………………23
Chapter 4 Fatigue Damage Model…………………………………42
4.1 Fatigue Damage Model………………………………42
4.2 Results and Discussions………………………………49
4.2.1 Damage evolution behavior……………………49
4.2.2 Determination of the parameters……………51
4.2.3 Verification of the model………………………52
Chapter 5 S-N Curve and Fatigue Damage Model of GFRP…………71
5.1 S-N Curve and Their Transformation Relationship…71
5.2 Fatigue Damage Model…………….86
5.3 Conclusions of the Results and Discussions……96
Chapter 6 Concusions……………………………….97
References………………………………….99
1.Shen, G., “Fatigue Life Prediction of Composite Based on Microstress Analysis,” PhD thesis, University of Waterloo, 1993.
2.Sendeckyj, G. P, "Life Prediction for Resin-Matrix Composite Materials," In: Reifsnider, K. L. (ed.), Fatigue of Composite Materials. Composite Material Series 4. Elsevier, pp. 431-483, 1990.
3.Konur, O. and Mathews, F. L., "Effect of the Properties of the Constituents on the Fatigue Performance of Composites: a Review," Composites, Vol. 20, No. 4, pp.317-328, 1989.
4.Boller, K. H., 1969, "Fatigue Fundamentals for Composite Materials," Composite Materials: Testing and Design, ASTM STP 460, American Society for Testing and Materials, pp. 217-235.
5.Boller, K. H., "Fatigue Characteristic of RP Laminates Subjected to Axial Loading," Modern Plastics, pp. 145-188, 1964.
6.Echtermeyer, A. T., Engh, B., and Buene, L., "Lifetime and Young''s Modulus Changes of Glass/Phenolic and Glass/Polyester Composites Under Fatigue," Composites, Vol. 26, No.1, pp.45-56, 1995.
7.Shih, G. C. and Ebert, L. J., "The Effect of the Fiber/Matrix Interface on the Flexural Fatigue Performance of Unidirectional Fiberglass Composites," Composites Science and Technology, Vol. 28, pp. 147-161, 1987.
8.Highsmith A. L., Reifsnider, K. L., "Stiffness-Reduction Mechanisms in Composite Laminates," In: Reifsnider, K. L. (ed.), Damage in Composite Materials. ASTM STP 775. pp 103-117, 1982.
9.Degriek, J., van Paepegen, W., "Fatigue Damage Modelling of Fiber-reinforced Composite Materials: Review, " Applied Mechanics Reviews, Vol.54, No.4, pp. 279-300, 2001.
10.Hwang, W. and Han, K. S., "Fatigue of Composites- Fatigue Modulus Concept and Life Prediction," Journal of Composite Materials, Vol. 20, pp. 154-165, 1986.
11.Kim, H. C. and Ebert, J., "Axial Fatigue Failure Sequence and Mechanisms in Unidirectional Fiberglass Composites," Journal of Composite Materials, Vol. 12, pp. 139-152, 1978.
12.Hwang, W. and Han, K. S., "Cumulative Damage Models and Multi-Stress Fatigue Life Prediction," Journal of Composite Materials, Vol. 20, pp. 125-153, 1986.
13.Whitworth, H. A., "A Stiffness Degradation Model for Composite Laminates under Fatigue Loading," Composite Structures, Vol. 40, No. 2, pp. 98-101, 1998.
14.Whitworth, H. A., "Evaluation of the Residual Strength Degradation in Composite Laminates under Fatigue Loading," Composite Structures, Vol. 48, pp.261-264, 2000.
15.Hashin, z., Rotem, A., "A Fatigue Criterion for Fiber Reinforced Composite Materials," Journal of Composite Materials, Vol. 7, pp. 448-464, 1973.
16.Ellyin, F., El-Kadi, h.,"A Fatigue Failure Criterion for Fiber Reinforced Composite Laminate," Composite Structure, Vol.15, pp. 61-74, 1990.
17.Reifsnider, K. L., Gao, Z., "A Micromechanics Model for Composites under Fatigue Loading," International Journal of Fatigue, Vol.13, No.2, pp. 61-74, 1991.
18.Petermann, J., Plumtree, A., "A Unified Fatigue Failure Criterion for Unidirectional Laminates," Composite: Part A, Vol. 32, pp.107-118, 2001.
19.Lawrence Wu, C. M., "Thermal and Mechanical Fatigue Analysis of CFRP Laminates," Composite Structures, Vol.25, No. 1, 339-344, 1993.
20.Dharan, C. K. H., "Fatigue Failure Mechanisms in a Unidirectionally Reinforced Composite Material," Fatigue of Composite Materials, ASTM STP 560, American Society for Testing and Materials, pp.171-188, 1975.
21.Dharan, C. K. H., "Fatigue Failure in Graphite Fibre and Glass Fibre-Polymer Composites," Journal of Materials Science, Vol. 10, pp.1665-1670, 1975.
22.Reifsnider, K. L., Schulte, K., and Duke, J. C, "Long-Term Fatigue Behavior of Composite Materials," Long-Term Behavior of Composites, ASTM STP 813, T. K. O''Brien, Ed., American Society for Testing and Materials, pp.136-159, 1983.
23.Reifsnider, K. L., Stinchcomb, W. W., "A Critical-Element Model of the Residual Strength and Life of Fatigue-Loaded Composite Coupons," Composites materials, fatigue and fracture, ASTM STP 907, Hahn HT, Ed., American Society for Testing and Materials, pp.298-313, 1986.
24.Herakovich, C.T., Aboudi, J., Lee, S.W., Strauss, E.A., "Damage in Composite Laminates: Effects of Transverse Cracks, "Mechanics of Materials, Vol.7, pp. 91-107, 1988.
25.Sun, Z., Daniel, I. M., Luo, J. J., "Progresses in Fracture and Strength of Materials and Structures," Materials Science and Engineering A, Vol.361, pp.302, 2003
26.Dzenis, Y. A., "Cycle-based analysis of damage and failure in advanced composites under fatigue: 1. Experimental observation of damage development within loading cycles, " International Journal of Fatigue, Vol. 25, No. 6, pp. 499-510, 2003.
27.Dzenis, Y. A., "Cycle-based analysis of damage and failure in advanced composites under fatigue: 2. Stochastic mesomechanics modeling, " International Journal of Fatigue, Vol. 25, No. 6, pp. 511-520, 2003.
28.Andersons, J., Korsgaard, J, "The Effect of Stress Ratio on Durability and Damage Accumulation in GRP at Uniaxial Loading," In: Degallaix, S., Bathias, C., and Fougeres, R. (eds.), International Conference on Fatigue of Composite. Proceedings, 3-5 June, Paris, France, La Societe Francaise de Metallurgie et de Materiax, pp. 315-322, 1997.
29.Xiao, X. R., "Modeling of Load Frequency Effect on Fatigue Life of Thermoplastic Composites," Journal of Composite Materials, Vol. 33, No. 12, pp. 1141-1158, 1999.
30.Sun, C. T. and Chan, W. S., "Frequency Effect on the Fatigue Life of a Laminated Composite," Composite Materials: Testing and Design, ASTM STP 674, pp. 418-430, 1979.
31.Mandell J. F. and Meier, U., "Effects of Stress Ratio, Frequency, and Loading Time on the Tensile Fatigue of Glass-Reinforced Epoxy," Long-Term Behavior of Composites, ASTM STP 813, pp. 55-77, 1983.
32.Epaarachchi, J. A., Clausen, P.D., "On Predicting the Cumulative Fatigue Damage in Glass Fiber Reinforced Plastic (GFRP) Composites under Step/discrete Loading," Composites Part A: Applied Science and Manufacturing, Vol. 36, No.9, pp.1236-1245, 2005.
33.Epaarachchi, J. A., Clausen, P.D., "An Empirical Model for Fatigue Behavior Prediction of Glass Fiber-Reinforced Plastic Composites for Various Stress Ratio and Testing Frequencies," Composites Part A: Applied Science and Manufacturing, Vol. 34, pp.313-326, 2003.
34.Rotem, A. and Nelson, H. G., "Fatigue Behavior of Graphite-Epoxy Laminates at Elevated Temperature," Fatigue of Fibrous Composite Materials, ASTM STP 723, pp. 152-173, 1981.
35.Miyano, Y., Nakada, M., McMurray, M. K., and Muki, R., "Prediction of Flexural Fatigue Strength of CFRP Composites under Arbitrary Frequency, Stress Ratio and Temperature," Journal of Composite Materials, Vol.31, No.6, pp.619-638, 1997.
36.Miyano, Y., McMurray, M. K., "Loading Rate and Temperature Dependence on Flexural Fatigue Behavior of a Satin Woven CFRP Laminate," Journal of Composite Materials, Vol. 28, No. 13, pp. 1250-1260, 1994.
37.Miyano, Y., Kanemitsu, M., Kunio T., and Kunh, H., "Role of Matrix Resin on Fracture Strengths of Unidirectional CFRP," Journal of Composite Materials, Vol. 20, pp. 520-538, 1986.
38.Miyano, Y., Nakada, M., Kudoh, H., and Muki. R, "Prediction of Tensile Fatigue Life for Unidirectional CFRP, " Journal of Composite Materials, Vol.34, No.7, pp.538-550., 2000.
39.Dally, J. W. and Broutman, L. J., "Frequency Effects on the Fatigue of Glass Reinforced Plastics, " Journal of Composite Materials, Vol. 1, pp. 424-442, 1967.
40.Harris, B., "Fatigue and Accumulation of Damage in Reinforced Plastics," Composites, October, pp. 214-220, 1977.
41.Mandell, J. F., Huang, D. D., and McGarry, F. J., "Tensile Fatigue Performance of Glass Fiber Dominated Composites," Composites Technology Review, Vol. 3, No. 3, pp. 96-102, 1981.
42.Miner, M.A, "Cumulative Damage in Fatigue," Journal of Applied Mechanics, Vol.12, September, A159-164., 1945.
43.Chen, H. S., Hwang, S. F., "Accelerated Fatigue Properties of Unidirectional Carbon/Epoxy Composite Materials," Polymer Composites, Vol. 27, No. 2, pp. 138-146, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top