(100.26.179.251) 您好!臺灣時間:2021/04/14 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪正翰
研究生(外文):Zheng-Han Hong
論文名稱:分子動力學於原子級應力計算及薄膜沉積處理之應用
論文名稱(外文):Atomic-Level Stress Calculation and Investigation of Thin Film Deposition Process Using Molecular Dynamics Simulation
指導教授:方得華方得華引用關係黃順發黃順發引用關係
指導教授(外文):Te-Hua FangShun-Fa Hwang
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:145
中文關鍵詞:週期邊界原子級的應力徑向分怖函數薄膜混合平均主軸向應力轟擊平均正應力分子動力學Morse勢能函數緊束法勢能函數磊晶成長
外文關鍵詞:the average mean biaxial stressaverage normal stressatomic-level stressmolecular dynamicsSecond-Moment Approximation of the Tight-BindingMorse potentialepitaxymixingsputteringperiodic boundaryradial distribution function
相關次數:
  • 被引用被引用:4
  • 點閱點閱:304
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以分子動力學介紹薄膜生長物理機制在不同的入射能量、基板溫度、入射角度、沉積速率。以二體勢能Morse勢能函數和多體勢能緊束法勢能函數做為鐵、鈷、鋁、銅沉積在銅基版的勢能函數。對於磊晶成長、薄膜混合、轟擊的區間,沉積速率為5 atom/ps,使用緊束法勢能函數,入射能量低於3 eV會有磊晶成長的現象,入射能量為3~5 eV會有原子混合情形,轟擊現象入射能量為10 eV以上;使用Morse勢能函數,磊晶成長的形成入射能量為低於5 eV,混合現象為5~50 eV,轟擊現象入射能量為50 eV以上。討論磊晶表面的形態,當入射角度增大時,只能稍微的改變表面粗糙度,然而入射能量從0.5 eV增加到 5 eV,可以明顯的改變表面粗糙度,不過增加基板溫度更有效改變鍍膜的平坦性。因此,增加基板溫度可以明顯的改善表面粗糙度。沿厚度方向的平均正應力和平均主軸向應力被使用做原子級的應力計算,當基板受到X、Y週期邊界的限制,入射原子撞擊基板時,基板所受到的應力為壓縮應力。對於混合系統,當基板溫度從 300 K到 1000 K時,徑向分怖函數 (RDF)的第一個鋒值會變的比較低和寬,也就是說基板溫度增加時,原子的混合效果會比較好。
Molecular dynamics is employed to investigate the film growth at different deposition conditions of incident energy, substrate temperature, incident angle, and deposition rate. The Morse two-body potential and the Second-Moment Approximation of the Tight-Binding (TB-SMA) many-body potential are employed for Fe, Co, Al or Cu onto Cu(001) substrate. For epitaxy, mixing, and sputtering modes, the results indicate that when the TB-SMA potential is used under 5 atom/ps deposition rate, the epitaxy mode of film growth is observed as the incident energy is lower than 3 eV, the film mixing mode clearly occurs from 3 to 5 eV, and the sputtering phenomenon is significant after 10 eV. When the Morse potential is used, the epitaxy mode is observed below 5 eV, the film mixing mode occurs around 5~50 eV, and the sputtering process may be clear only after 50 eV. To discuss the morphology of the eptiaxy mode, an excessive incident angle does not improve surface roughness because it is associated with limited surface diffusion. Furthermore, increasing the incident energy from 0.5 to 5 eV improves the surface roughness by improving the energetic atom mobility. However, increasing the substrate temperature may be more effective in smoothening the surface than increasing the incident energy when the latter does not exceed 5 eV. Hence, to improve the surface roughness, the substrate temperature should be increased in Volmer-Weber mode. As for the atomic-level stress, the average normal stress along thickness direction and the average mean biaxial stress are considered. Both the average stresses at the substrate layer are compressive stresses, because the substrate suffered from the deposition of incident atoms and the substrate atoms are also compressed due to periodic boundary conditions along the x and y directions. For the mixing system, the first peak of the radial distribution function becomes low and wide for as the substrate temperature is increasing from 300 to 1000 K. Hence, the mixing mode becomes clear as the substrate temperature is increased.
中文摘要 ………………………….……………………………… i
Abstract …………………………………………………………… ii
誌謝 …………………………………………………………… iv




Contents …………………………………………………………… v
Tables …………………………………………………………… vii
Figures …………………………………………………………… viii

Notation …………………………………………………………… xiii
Chapter 1 Exordium………………………………………………… 1
1.1 Introduction……………………………………………… 1
1.2 Literature Review……………………………………………… 1
1.3 Organization……………………………………………………. 7
Chapter 2 Theory of Molecular Dynamics……………………………… 10
2.1 Basic MD………………………………………………………. 10
2.2 General Predictor-Corrector Algorithms……………………….. 12
2.3 Interatomic Potential………………………………………..... 14
2.3.1 Two-Body Potential…………………………………………… 15
2.3.2 Many-Body Potential………………………………………..... 16
2.4 Force computations…………………………………………….. 17
2.5 Boundary Conditions……………………………...………….. 18
2.5.1 Cell subdivision……………………………………………… 19
2.5.2 Thermal equilibrium…………………………………………. 21
Chapter 3 Numerical Method……………………………………………... 28
3.1 Simulation model………………………………………………. 28
3.2 Reduced Units………………………………………………...... 29
3.3 Radial Distribution Function…………………............................ 30
3.4 Stress Evolution of Nano-Atoms……………………..…........... 32
3.5 Flowchart of the Simulation………………………….………… 33
Chapter 4 Atomic-Level Stress Calculation and Two Potentials for Critical Conditions of Deposition Process…………………… 37
4.1 Simulation model……………………………….……………… 37
4.2 Results and discussions……………………………………….... 38
4.2.1 The difference on the effect of incident energy……………… 38
4.2.2 The difference on the effects of incident angle and substrate temperature…………………………………………………….. 45
4.2.3 The stress evolution under the effect of substrate temperature…………………………………………………….. 48
4.3 Conclusion………………..........………………………………. 51
Chapter 5 Effect of substrate temperature and deposition rate on alloyzation of Co or Fe onto Cu(001) substrate……………....... 65
5.1 Simulation model……………………………………………..... 65
5.2 Results and discussions……………………………………….... 66
5.2.1 Temperature gradient in the substrate and the deposited thin film……………………………………………………………... 66
5.2.2 Effect of substrate temperature………………………………… 67
5.2.3 Effect of deposition rate……………………………………… 71
5.2.4 The RDF under different substrate temperature.......................... 72
5.3 Conclusion…………………………………………………….. 73
Chapter 6 Effect of substrate temperature and incident energy for alloyzation of Co onto Cu(001) substrate……………………… 83
6.1 Simulation model……………………………………………… 83
6.2 Results and discussions………………………………………… 84
6.2.1 Film growth mechanism under different simulation time……… 84
6.2.2 Effect of substrate temperature………………………………… 85
6.2.3 Effect of incident energy……………………………………… 86
6.2.4 RDF under different substrate temperatures and different incident energies……………………………………….............. 86
6.3 Conclusion…………………………………………………… 88
Chapter 7 Atomic-Level stress calculation and surface roughness of film deposition process……………………………………………… 93
7.1 Simulation model……………………………………………..... 93
7.2 Results and discussions………………………………………… 94
7.2.1 The surface roughness on the effect of incident energy, incident angle, and substrate temperature……………………………… 94
7.2.2 The stress evolution under the effect of incident energy and substrate temperature………………………………………… 99
7.3 Conclusion…………………………………………………… 101
Chapter 8 Conclusions…………………………………………………. 115
Reference ………………………………………………………………… 118
Author ………………………………………………………………… 127
Journal paper ………………………………………………………………… 128
[1]B. K. Kuanr, M. Buchmeier, D. E. Buergler and P. Gruenberg, 2002, “Exchange Coupling of Molecular-Beam-Epitaxy-Grown Fe/Al/Fe Trilayers by Dynamic Techniques,” Journal Applied Physcial, Vol. 91, pp. 7209-7211.
[2]E. Fonda and A. Traverse, 2004, “Evidence of Intermixing at the Fe/Al Interface in Multilayers Produced by Metal Vapor Deposition at Room Temperature,” Journal of Magnetism and Magnetic Material, Vol. 268, pp. 292-297.
[3]S. G. Lee, S. P. Kim, K.R. Lee and Y.C. Chung, 2005, “Atomic-Level Investigation of Interface Structure in Ni-Al Multilayer System: Molecular Dynamics Simulation,” Journal of Magnetism and Magnetic Material, Vol. 286, pp. 394-398.
[4]S. G. Lee and Y. C. Chung, 2006, “Atomic Investigation of Al/Ni(001) by Molecular Dynamics Simulation,” Japanese Journal of Applied Physics, Vol. 45, No. 1, pp. 99-101.
[5]C. Y. Chung and Y. C. Chung, 2006, “Molecular Dynamics Simulation of Nano-Scale Fe-Al Thin Film Growth,” Materials Letters, 60, pp.1063-1067.
[6]S. P. Ju, Y. C. Lo, S. J. Sun and J. G. Chang, 2005, “Investigation on the Structural Variation of Co-Cu Nanoparticles during the Annealing Process,” Journal of Physical Chemistry. B 109, pp. 20805-20809.
[7]S. J. Sun, S. P. Ju, Y. C. Lo and J. S. Lin, 2005 “An Investigation into the Magnetic Properties of Co-Cu Nanoparticles at Different Temperature,” Journal of Applied Physics, 97, pp. 094308.
[8]R. W. Smith and D. J. Srolovitz, 1996, “Void Formation during Film Growth: A Molecular Dynamics Simulation Study,” Journal of Applied Physics, Vol. 79, pp. 1448-1457.
[9]L. Dong, R. W. Smith and D. J. Srolovitz, 1996, “A Two Dimensional Molecular Dynamics Simulation of Thin Film Growth by Oblique Deposition,” Journal of Applied Physics, Vol. 80, pp. 5682-5690.
[10]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, 2002, “A Molecular Dynamics Study of Deposition Rate Dependence of Film Morphology in the Sputtering Process,” Surface and Coatings Technology, 149, pp. 135-142.
[11]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, 2001, “Topographic Study of Sputter-Deposited Film with Different Process Parameters,” Journal of Applied Physics, 89, pp. 7825-7832.
[12]L. A. Girifalco and V. G. Weizer, 1959, “Application of the Morse Potential Function to Cubic Metals”, Physics Review, Vol. 114, No. 3, pp. 687-690.
[13]N. Yamaguchi, Y. Sasajima, K. Terashima and T. Yoshida, 1999, “Molecular Dynamics Study of Cluster Deposition in Thermal Plasma Flash Evaporation,” Thin Solid Films, 345, pp. 34-37.
[14]M. S. Daw and M. I. Baskes, 1983, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Physical Review B, 50, pp. 1285-1288.
[15]M. S. Daw and M. I. Baskes, 1984, “Embedded-Atom Method: Derivation and Application to Impurities Surfaces and Other Defects in Metals,” Physical Review B, 29, pp. 6443-6543.
[16]R. A. Johnson, 1988, “Analytic Nearest-Neighbor Model for FCC Metals,” Physical Review B, 37, pp. 3924 - 3931.
[17]C. J. Chu and T. C. Chen, 2006, “Surface Properties of Film Deposition Using Molecular Dynamics Simulation,” Surface & Coatings Technology, 201, pp. 1796-1804.
[18]Z. B. Güvenc and R. Hippler, B. Jackson, 2004, “Bombardment of Ni(100) Surface with Low-Energy Argons: Molecular Dynamics Simulations,” Thin Solid Films, 474, pp. 346-357.
[19]C. C. Hwang, J. G. Chang, G. J. Huang and S. H. Huang, 2001, “ Investigation of Cluster Size and Cluster Incident Energy Effect on Film Surface Roughness for Ionized Cluster Beam Deposition,” Journal of Applied Physics, 92, pp. 5904-5912.
[20]M. A. Karolewski, 2001, “Tight-Binding Potentials for Sputtering Simulations with FCC and BCC Metals,” Radiation Effects and Defects in Solids, 153, pp. 239-255.
[21]M. H. Su and J. M. Lu, 2006, “ Investigation of Ar Incident Energy and Ar incident Angle Effects on Surface Roughness of Cu Metallic Thin Film in Ion Assisted Deposition, Computational Materials Science, 38, pp. 386-394.
[22]V. Marcon, G. Raos, M. Campione and A. Sassella, 2006, “Incommensurate Epitaxy of Tetrathiophene on Potassium Hydrgen Phthalate: Insights from Molecular simulation,” Crystal Research and Technology, l6, pp. 1826-1832.
[23]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, 2002, “Molecular Dynamics Simulation of Sputter Trench-Filling Morphology in Damascene Process,” Journal Vacuum Science and Technology, 20, pp. 946-955.
[24]D. Chocyk, T. Zientarski, A. Proszynski, T. Pienkos, L. Gladyszewski and G. Gladyszewski, 2005, “Evolution of Stress and Structure in Cu Thin Films,” Crystal Research and Technology, 40, No.4/5, pp. 509-516.
[25]S. Zhang, H. T. Johnson, G. J. Wagner, W. K. Liu and K. J. Hsia, 2003, “Stress Generation Mechanisms in Carbon Thin Films Grown by Ion-Beam Deposition,” Acta Materialia, 51, pp.5211-5222.
[26]A. Rahman, 1964, “Correlations in the Motion of Atoms in Liquid Argon,” Physical Review, Vol. 136, Iss. 2A, pp. 405-411.
[27]C. W. Gear, 1971, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Englewood Cliffs, NJ, Chapter 9.
[28]J. E. Lennard-Jones, 1924, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Processdings of the Royal Society, 106A, pp. 441-462.
[29]R. Smith, 1997, “Atomic & Ion Collisions in Solids and at Surfaces,” Cambridge University Press, London.
[30]K. Maekawa and A. Itoh, 1995, “Friction and Tool Wear in Nano-Scale-Machining - A Molecular Dynamics Approach,” Wear Vol. 188, pp. 115-122.
[31]A. Anderman, 1966, Report AFCRL-66-688, Atomics Interational, Canoga Park.
[32]D. E. Harrison Jr, 1989, “Application of Molecular Dynamics Simulations to the Study of Ion-Bombarded Metal Surfaces,” CRC Critical Reviews in Solid State and Materials Sciences, Vol. 14, S. 1.
[33]F. Cleri and V. Rosato, 1993, “Tight-Binding Potentials for Transition Metals and Alloys,” Physical Review B, 48, pp. 22-33.
[34]L. Colombo, 1998, “A Source Code for Tight-Binding Molecular Dynamics Simulation,” Computational Materials Science, Vol. 12 (1998) 278-287.
[35]F. H. Stillinger, T. A. Weber, 1985, “Computer Simulation of Local Order in Condensed Phases of Silicon,” Physical Review B, pp. 5262-5271.
[36]F. H. Stillinger, T. A. Weber, 1989, “Fluorination of the Dimerized Si(100) Surface Studied by Molecular-Dynamics Simulation,” Physical Review. Letters, 62, pp. 2144-2147.
[37]P. Süle and M. Menyhard, 2005, “Strong Mass Effect on Ion-Beam Mixing in Metal Bilayers: A Ballistic Picture,” Physical Review, B71, pp. 113413.
[38]P. Süle, M. Menyhard and K. Nordlund, 2004, “What Is the Real Driving Force of Bilayer Ion Beam Mixing?,” Nuclear Instrumeats & Methods in Phycics Research Section B-Beam Interactions with Materials and Atoms, B226, pp. 517-530.
[39]P. Süle, M. Menyhard and K. Nordlund, 2003, “Does the Thermal Spike Affect Low Energy Ion-Induced Interfacial Mixing?,” Nuclear Instrumeats & Methods in Phycics Research Section B-Beam Interactions with Materials and Atoms, B211, pp. 524-532.
[40]P. Süle, 2008, “Self-organized transient facilitated atomic transport in Pt/Al(111),” The Journal of Chemical Physics, B128, pp. 134708-134708-12.
[41]M. Imafuku, Y. Sasajima, R. Yamamoto and M. Doyama, 1986, “Computer Simulations of the Structures of the Metallic Superlattices Au/Ni and Cu/Ni and Their Elastic Moduli,” Journal of Physics. F. Metal Physics, 16, pp. 823-829.
[42]J. M. Haile, 1992, “Molecular Dynamics Simulation, “John Wiley and Sons, Inc., New York.
[43]Z. S. Basinski, M. S. Duesberry and R. Taylor, 1971, “Influence of Shear Stress on Screw. Dislocations in a Model Sodium Lattice,” Canadian Journal of Physics, 49, pp. 2160-2180.
[44]D. Chocyk, T. Zientarski, A. Proszynski, T. Pienkos, L. Gladyszewski and G. Gladyszewski, 2005, “ Evolution of Stress and Structure in Cu Thin Films,” Crystal Research and Technology, 40, pp. 509-516.
[45]Y. Qiang, Y. Thurner, Th. Reiners, O. Rattunde and H. Haberland, 1998, “TiN and TiAlN Coatings Deposited at Room Temperature by Energetic Cluster Impact,” Surface Coating Technology, pp. 27-32.
[46]D.E. Harrison, 1983, “Sputtering Models -- A Synoptic View,” Radiation Efdects, Vol. 70, pp. 1-64.
[47]W.H. Hayward and A.R. Wolter, 1969, “Sputtering Yield Measurements with Low-Energy Metal Ion Beams,” Journal of Applied Physics, 40, pp. 2911-2916.
[48]G. H. Gilmer, M. H. Grabow and A. F. Bakker, 1990, “Modeling of Epitaxial Growth,” Materials Science and Engineering, 6, pp. 101-112.
[49]Z. H. Hong , S. F. Hwang and T. H. Fang, 2007, “Critical Conditions of Epitaxy, Mixing and Sputtering Growth on Cu(100) Surface Using Molecular Dynamics,” Computational Materials Science.
[50]J. Tarus and K. Nordlund, 2003, “Molecular Dynamics Study on Si20 Cluster Deposition on Si(001) ,” Nuclear Instruments and Methods in Physical Research B, 212, PP. 281-285.
[51]J. L. Xu and J. Y. Feng, 2002, “Study of Ge Epitaxial Growth on Si Substrates by Cluster Beam Deposition,” Journal of Crystal Growth, 240, pp. 407-414.
[52]J. E. Vasek, Zhenyu Zhang, C. T. Salling and M. G. Lagally, 1995, “Effects of Hydrogen Impurities on the Diffusion, Nucleation, and Growth of Si on Si(001),” Physical Review, B 51, pp.17207-17120.
[53]M. E. Taylor, Harry A. Atwater, and M. V. Ramana Murty, 1998, “Role of Energetic Flux in Low Temperature Si Epitaxy on Dihydride-Terminated Si (001),” Thin Solid Films, pp.85-88.
[54]N. Hernández and J. F. Sanz, 2001, “Molecular Dynamics Simulations of Pd Deposition on the Alpha-Al2O3 (0001) Surface,” Journal of Physical Chemistry B, 105 (48), pp.12111-12117.
[55]D. Rigby and R. J. Roe, 1988, “Molecular Dynamics Simulation of Polymer Liquid and Glass. II. Short Range Order and Orientation Correlation,” Journal of Chemical Physical, Vol.89, Iss. 8, pp. 5280-5290.
[56]J. Giergiel, J. Shen, J.Woltersdorf, A. Kirilyuk, and J. Kirschner, 1995, “Growth and Morphology of Ultrathin Fe Films on Cu(001),” Physics Review, B 52, pp.8528-8534.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔