(3.238.240.197) 您好!臺灣時間:2021/04/12 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鐵元
研究生(外文):Tee-Yuan Chen
論文名稱:鎳合金電鑄高深寬比微結構成型技術研究
論文名稱(外文):Research of Nickel Alloy Electroforming Technology on High Aspect Ratio Microstructure
指導教授:汪島軍汪島軍引用關係
指導教授(外文):Dau-Chung Wang
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:124
中文關鍵詞:鎳合金電鑄
外文關鍵詞:Nickel AlloyElectroforming Technology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:622
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:173
  • 收藏至我的研究室書目清單書目收藏:0
克服電鑄製程問題之研究於國際間已提出許多解決方案,如添加有機添加物,運用脈衝電流降低內應力、提高極限電流密度及離子濃度等。但對小孔徑且深寬比在10以上,電鑄仍存在一些問題需克服,如需克服因微小尺寸效應加大黏滯力、毛細力、表面張力、壓力梯度所引發之阻力,及孔道內濃度分佈不均造成的電鑄層缺陷甚至中斷等現象。
本研究之目的係解決高深寬比在10以上的微結構電鑄問題,及因應未來機械領域之微機電系統的的需要,研製一高功能且均勻沉積之合金電鑄層。
本研究方法係建置一個創新之實驗設備,此實驗設備能保持電場、磁感、及電鑄液流速三者相互垂直,產生能驅動陽離子變更運動方向之羅倫茲力(Lorentz Force),使Ni+2、Co+2、Mn+2陽離子能克服黏滯力、毛細力、表面張力、及壓力梯度等阻力,順利進入高深寬比微結構中,達到較添加添加劑更佳之結果例如改變結晶之行為、得到更均勻之電鑄層、更高之沉積速率及電流效率。研究結果顯示,施加脈衝電場與磁感磁場進行平面電鑄所產生之合金電鑄層,其晶粒尺寸及表面粗度較僅施加直流電流或僅施加脈衝電流為小,亦即可得到較平滑及硬度較高之電鑄層,且不會因MHD效應造成電鑄層區域性形貌差異大之現象。同時亦驗證外加垂直磁場確實可克服黏滯力、毛細力、表面張力及壓力梯度等阻力,使離子進入高深寬比微結構孔道中,降低擴散層厚度及濃度極化。尤其是施加同步脈衝電場與磁感時,可獲得較小之結晶晶粒。此外,發現脈衝磁感與NiCoMn合金之晶粒行為有強烈相關性,
研究結果顯示,2,6-萘二磺酸鈉(C10H6(SO3N)2)是Ni-Co-Mn三元合金之較佳應力劑;NiSO4*6H2O(g/L):200;CoSO4*7H2O(g/L):40;NH4Cl(g/L):10;MnSO4*5H2O(g/L):40;C12H25SO4Na(g/L):1;C10H6(SO3N)2(g/L):2;H3BO3(g/L):30
是NiCoMn三元合金較佳之電鑄液配方,運用此配方得到的鎳鈷錳三元合金電鑄層具有較佳之綜合機械性能。
The purposes of this thesis is to solve the electroforming problem of high aspect ratio microstructure and obtain high performance as well as uniform electroformed layer, which fit MEMS of mechanical industry in the future.The methodology of research is built-up a creative equipment which make electric field, flux density and velocity of electrolyte perpendicular each other all the time.
From the experimental results, the following conclusions can be drawn
1.The application of a synchronized pulsed electric and magnetic field is beneficial to the electroforming of Ni-Co-Mn layer. It yields smaller grain size compared to the condition where only DC current or pulsed current is used. The application of a synchronized pulsed electric and magnetic field has an effect to increase the concentration of metal ions that ultimately results in higher densities of nucleus for nucleation with more consolidated structure. Furthermore, we have obtained sample with the smooth surface and confirmed by AFM micrograph .This is good evidence that MHD effect is absent.
2.The application of the external magnetic field will facilitate use of lower current density preventing hydrogen bubble formation, at low current density, the induced Lorenz force will help metal ions to move further into the HAR microstructure overcoming vicious resistance and surface tension. This study have realized a 1:10(100μm:1000μm) microstructure with synchronized electric impulse and magnetic fields.
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
符號說明
一、 緒論-------------------------------------------------- 1
二、 研究內容與方法---------------------------------------- 3
2.1 研究內容-----------------------------------------------3
2.2 研究動機-----------------------------------------------4
2.2.1 文獻探討-----------------------------------------------4
2.2.2 高深寬比電鑄面臨的問題及現階段解決方法-----------------11
2.3 研究方法-----------------------------------------------15
三、 理論---------------------------------------------------17
3.1 磁流體動力效應-----------------------------------------17
3.2 FL 、F▽C、F▽B對電鑄或電鍍產生之效應------------------18
3.3 磁場與電場對順磁性離子運動之影響-----------------------22
3.4 順磁性離子於磁場與電場作用下之運動軌跡的數學模擬-------26
3.5 羅倫茲力與進入微結構孔道離子數量關係-------------------43
四、 實驗設備及量測儀器-------------------------------------45
4.1 實驗設備佈置圖-----------------------------------------45
4.2 電源穩定輔助裝置---------------------------------------48
4.3 電磁場分佈模擬-----------------------------------------48
五、 電鑄液應力劑之選擇-------------------------------------53
5.1 Ni-Co-Mn 合金電鑄面臨之問題----------------------------54
5.2 Ni-Co-Mn合金電鑄電解液成分與應力劑選擇-----------------54
六、 外加磁場對Ni-Co-Mn電鑄層之影響-------------------------66
6.1 外加垂直磁場對晶粒尺寸與表面粗度之效應-----------------66
6.2 外加垂直磁場對沉積效率之效應---------------------------66
6.3 外加垂直磁場對電鑄層形貌之效應-------------------------67
6.4 外加垂直磁場對電流效率之效應---------------------------67
七、 外加磁場對Ni-Co-Mn高深比微結構電鑄之效應---------------71
7.1 Ni-Co-Mn最佳配方---------------------------------------71
7.2 電場及磁場對高深寬比微結構電鑄之影響-------------------76
7.2.1 結構強度比較-------------------------------------------77
7.2.2 沉積速率比較-------------------------------------------77
7.3 電場與磁場比值對高深寬比微結構電鑄之影響-----------------78
7.4 頻率對高深寬比微結構電鑄之影響---------------------------79
八、 結論---------------------------------------------------87
九、 未來研究方向-------------------------------------------90
參考文獻--------------------------------------------------------92
附錄一----------------------------------------------------------97
附錄二----------------------------------------------------------98
附錄三---------------------------------------------------------100
附錄四---------------------------------------------------------101
附錄五---------------------------------------------------------102
附錄六---------------------------------------------------------105
自傳-----------------------------------------------------------108
﹝1﹞Elin S. et al.,2002,“ Etch rate of (100),(111) and (110) single-crystal silicon in situ by reflectance interferometer”, Sensor and Actuators A,Vol. 86, pp.73-80
﹝2﹞Bacher W. et al., 1995,“The LIGA Technique and its Potential for Microsystems”,IEEE Trans. Ind. Electr., Vol.42,No.5, pp.431-441
﹝3﹞陳建任,2005,“微細加工技術在金屬相關產業之應用”,ITIS專題報告。
﹝4﹞周敏傑等,1998,“微結構之合金電鑄技術研究”,機械工業185期,頁150-157。
﹝5﹞陳亞,2003,現代實用電鍍技術,國防工業出版社,北京。
﹝6﹞李荻,1999,電化學原理,北京航空天學出版社。
﹝7﹞Epelboin, I., Wiart, R., 1971,“ Mechanism of the Electrocrystallization of Nickel and Cobalt in Acidic Solution”, J. Electrochem. Soc.,Vol.113, No.10, pp.1577-1582,
﹝8﹞劉晉春,趙家齊,2001,特種加工,哈爾濱工業大學
﹝9﹞Dickerson, R. E., et al., 1973,Chemical Principles. New York
﹝10﹞Potter, E. C., 1970, Electrochemister, Cleaver-Hume Press Ltd.
﹝11﹞朱荻,2003,奈米晶精密電鑄技術研究”,中國機械工程,第14卷第12期. 頁130-136
﹝12﹞Saryanarayana C., Frose F.H., 1992,“The structure and mechanical properties of metallic nano- crystals”, Metallurgical Transaction, Vol.23 ,pp.1071-1081
﹝13﹞Ebrahimi F., Bourne G. R., 1999,“Mechanical Properties of Nanocrystalline Nickel Produced by Electro- deposition”, Nanostructured Material, Vol.11,No.3, pp.343-350。
﹝14﹞EL-Sheri A.M.,Erb E.,1995,“Synthesis of Bulk Nanocrystaline Nickel by pulsed Electrodeposition”,Journal of Material Science,Vol.30,No.5, pp743-749。
﹝15﹞A. Brenner, 1963,“ Electrodeposition of Alloy, Principles and Practice ”,Vol . 1 and 2, Academic Press. , New York and London,
﹝16﹞H. Dahms, I. M. Croll, 1965, J. Electrochem, Soc. Vol.112, No.8, pp. 771-775.
﹝17﹞S. Hessami , C. W. Tobias , 1989, J. Electrochem. Soc. Vol.136,No.12,pp.3611-3616
﹝18﹞Yeh Y.M., Tu G.C., Ho P.R., 2003, Journal of Material Science and Engineering, Vol .35, No.2 , pp.121-126
﹝19﹞Yang Jiarrming,et al., 2004,“Electroforming of Nanocrystalline Ni-Mn alloy”, Mechanical Science and Technology,Vol. 23, No.1,pp.81-84
﹝20﹞蔡宗勳,2004,高深寬比微電鑄技術與複製過程研究,中興大學機械系,博士論文,
﹝21﹞徐惠宇,朱荻,曲宇松,2001,電加工與模具,第一期,頁18-20
﹝22﹞Lindblom M., 2007,“SU-8 plating mold for high-aspect-ratio Nickel zone plate”, Micro electric Engineering ,Vol.84,Issue8,pp.1136~1139。
﹝23﹞Ueno H., Hosaka M., Ehang Y., 1997,“Study on Fabrication of High Aspect Ratio microparts using the LIGA Process”, International Symposium on Micro Mechatronic and Human Science, Nagoya .
﹝24﹞Ching-Bin et al.,2000,“A Novel Fabrication Process for High-Aspect-Ratio And co-Axial Multi-Layer Nickel Microstructures”, Volume , Issue , 23-27 pp.584 - 589
﹝25﹞Di Chen et al., 2002,“Development of a New Micro fabrication Technique and Tts Applications”, China-EU Forum on Nanosized Technology, Beijing, China, Dec.
﹝26﹞Hsiharng Yang , et al., 2006, “High-aspect-ratio microstructural posts electroforming modeling and fabrication in LIGA process”, Microsyst. Technol. , Vol.12 , No.3, pp.187–192
﹝27﹞Hsiharng Yang, et al., 2003,“Rapid Growth Electroforming Technology for the LIGA Process”, Nanotechnology & MEMS Technology Symposium,Taipei, Nov. 20-21, pp. 257-260
﹝28﹞Dunn, L. A., Stokes, R. H., 1969,“Pressure and Temperature Dependence of the Electrical Permitivities of Formamide and Water”, Transaction of Faraday Society, Vol.65, pp.2906-2912,
﹝29﹞Moore, W. J., 1988,基礎物裡化學,黃麗鵬,林基興編譯,曉園出版社
﹝30﹞Riger,P.H., 1988, Electrochemistry, Prentic-Hall, Inc.
﹝31﹞Onsager, L., Fuoss, R. M., 1932,“ Irreversible Process in Electrolytes”,Journal of Physical Chemistry, Vol. 36, No18, pp.2689-2700,
﹝32﹞Tsung,H.T., 2004, Research of High Ratio Electroforming Technology and Replication Process , National Chung Thing University, Ph.D.Dissertation,
﹝33﹞Waskaas M., Kharkats Y.I., 1999, J. Phy. Chem. B, Vol.103, No23 , pp.4876~4883
﹝34﹞Aogaki R., 2000 , Trans. Mater. Res. Soc. Jpn.,Vol. 25., No2, pp. 59~63
﹝35﹞J. M. D. Coey, and G. Hinds, 2001 , J. Alloy. Comp.Vol. 326,No.3, pp.238~245
﹝36﹞Aogaki R., 2003, Magnetrohydronamics ,Vol.39,No.4, pp. 53~60
﹝37﹞Hinds G.,et al., 2001, J .Phys. Chem. B,Vol.105,No.39,pp.9487~9502
﹝38﹞Danilyuk A.L., et al.,1990 ,Thin Solid Films, Vol.189, pp.247~255
﹝39﹞K. Msellask, 2003,“ Electrodeposition metallique sous control MHD”, University of Reim, Ph.D. Dissertation.
﹝40﹞Krause A., 2006,“Electrcrystallization for Cobalt and Copper under Homogeneous Magnetic field”, Dresden University of Technology, Ph.D Dissertation.
﹝41﹞Steven R. Ragsdale, Kyle M. Grant, and Henry S. White,2001,“ Electrochemically generated magnetic forceenhanced transport of a paramagnetic Redox species in large nonuniform magnetic fields”, J. Am. Chem. Soc., Vol.120, No.51,pp.13461-13468
﹝42﹞Magne Waskaas, 1999 , “Magnetoconvection Phenomena : A mechanism for influence of magnetic fields on electrochemical Processes”, J. Phys. Chem. B, Vol.103, No.23, pp.4876-4883
﹝43﹞Tao Lin, 2004,“The mechanical model of electric charges moving in the electromagnetic fields”, Journal of Qufu Nornal University,Vol.30, No.4, pp.24-27
﹝44﹞Hiemenz P.C., 1997, Principles of colloid surface chemisty,Marcel Dekker, New York
﹝45﹞Derjaguin, B. V. and Landau L. D.,1941,“Theory of stability of strongly Charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes”, Acta Physicochemical URSS, Vol.14 ,pp.733-762
﹝46﹞Verwey, E. J. W. and J. Th. G. Overbeek, 1948 ,Theory of the stability of lyophobic colloids, Elsevier, Amsterdam
﹝47﹞Chikazumi, S., 1986, Physics of magnetism,John Wiley and Sons, New York ,
﹝48﹞Fermigier, M. And A. P. Gast ,1992 ,“Structure evolution in a paramagnetic latex suspension”, Journal of Colloid and Interface Science, Vol.154,No.2, pp.522-539.
﹝49﹞Promislow J.H., Gast A. P. and Fermigier M.,1995,“Aggregation kinetics of paramagnetic colloidal particles”, Journal of Chemical Physics,Vol. 102, No.13, pp.5492-5498.
﹝50﹞Maxey M. R., Climent, E., and Karniadakis G. E., 2004,“Dynamics of self-assembled chaining in magnetorheological fluids”, Langmuir, Vol.20, No.2, pp.507-513.
﹝51﹞Chin, C. J., Yiacoumi S., and Tsouris C.,2002,“ Agglomeration of magnetic particles and breakup of magnetic chains in surfactant solutions”, Colloids and surface A, Physicochemical and Engineering Aspects, Vol.204,No.1, pp.63-72.
﹝52﹞Svoboda, J., 1982 ,“Magnetic flocculation and treatment of fine weakly magnetic minerals”, IEEE Transactions on Magnetic, Vol.18,No.2, pp.796-801
﹝53﹞Yuhua Guo,et,al, 2006,“ Fabrication of LIGA mold insert using Ni-PTFE composite”, Journal of Physics: Conference Series 34 , pp.870–874
﹝54﹞Jianhua Zhu et al., 2007,“Mechanical properties of Cu/SiCp composites fabricated by composite electroforming”, Material letter, Vol.61, No.13,pp. 2804-2809.
﹝55﹞Zhu, J.H.et al.,2007,“Preparation and characterisation of electroformed Cu/nano Al2O3 composite”, Materials Science and Technology, Vol. 23, No.6, pp. 665-670.
﹝56﹞Teh Y.M., Tu G.C., Ho P.P.,2003,Journal of Material and Engineering, Vol.35, No.2, pp121-126
﹝57﹞Shih-Tsung Ke,et al., 2006, “Corrosion of Ni-W alloy electroplating coatinf”, Journal of Technology, Vol. 21, No. 1, pp. 75-79
﹝58﹞Yang J., Zhu Di, Xue Yujum, 2004,“Pulse electroforming Ni-Mn alloy and its microstructure”, Aviation PrecisionManufacturing Technology ,Vol.40 No.6, pp.241-250.
﹝59﹞Suzuki Aya,et al., 2007,“Development of Electroformed Ni-Co-based Magnetic Polishing Tools”, Transactions of the Japan Society of Mechanical Engineers. C, Vol.73, No.726, pp.632-638
﹝60﹞Van der Putten, A.M.T., and de Bakker, J.W.G., 1993,“Anisotropic Deposition of Electroless Nickel,” Journal of the Electrochemical Society, Vol. 140, No. 8, pp 2229-2234
﹝61﹞Chao-Min Cheng, Mon-Shu Ho, 2004,Japanese journal Applied Physic,Vol. 43, No. 8A, pp5480-5481
﹝62﹞Colaruotolo, J., Tramomtana, D. Engineering ,1990,“Application of Electroless Nickel”. In Electroless Plating, Mallory, G.O., G.O., Hajdu, J.B., Eds.; American Electroplaters and Surface Finishers Society: Orlando, FL, Chapter 8
﹝63﹞Weil R., 1970, Plating , Vol.57, No12, pp.1231-1237,
﹝64﹞Bayes, M.W., 1991, Electroless Nickel in the ,90s“ ,Metal Finish, Vol. 88, No.4, pp.27-28
﹝65﹞Chen B.H.,et al., 2002,“Effectcs of Surfactants in an Electroless Nickel-Plating Bath on the Properties of Ni-P Alloy Deposits”,Ind. Eng. Chem. Res., Vol.41,No.11,pp. 2668-2678,
﹝66﹞Semba Takuya, Kasa Yutaka, 2004,“Development of High-Speed Ni/P Electroforming Technique for Fabricating Microgrinding Tool”, Transactions of the Japan Society of Mechanical Engineers. C, vol.70, No.694, pp.1855-1860 ,
﹝67﹞Waldfried Plieth et al., 2007,Electrochemical Phase Formation of Ni and Ni-Fe Alloy in a Magnetic Field , Technical University of Dresden,Ph.D Dissertation,
﹝68﹞Ispas A., Bund A.,2005,“Influence of A Magnetic Field on the Electrodeposition of Nickle and Nickle-Iron Alloy”,The 15th and 6th Conference on Fundamental and Applied MHD, pp135-138
﹝69﹞Golodnitsky D.,et al.,2002,“ The role of anion addition in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte”, Electrochimica Acta , Vol.47, No.11 ,pp.2707-2714
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔