跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐建平
研究生(外文):Jian-ping Syu
論文名稱:混合能源系統的整合控制設計與應用
論文名稱(外文):Integrated control design and application for hybrid energy systems
指導教授:吳煒吳煒引用關係
指導教授(外文):Wei Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:118
中文關鍵詞:質子交換膜燃料電池溫度控制氧氣過量比混合能源風力發電機
外文關鍵詞:proton exchange membrane fuel celltemperaturewind turbinehybrid energyoxygen excess ratiocontrol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來 ,自從石油危機的發生, 能源的節省、儲藏、與開拓是刻不容緩的工作。本論文提出一種發電方式,由風力發電機與質子交換膜燃料電池來供應負載的需求,過剩的風能可以給予水電解器以產生氫氣,利用儲氫裝置儲存起來,隨時當作燃料電池的進料所需,此系統可以有效的儲存電能。然而在燃料電池運作階段,當電池電流瞬間需求量過大時,會使系統電池溫度超過操作範圍與氧氣枯竭之現象發生;當電池溫度過高時,將會造成質子交換膜脫水、破裂,嚴重的話,燃料電池將失去效能,而氧氣枯竭的發生也會造成質子交換膜受損,所以溫度與氧氣過量比的控制在燃料電池中是不容忽視的議題。
本論文提出模式預測控制策略,藉著冷卻水流率與空氣流率同時控制電池溫度與氧氣過量比在適合的操作點以確保系統性能,由於模式預測控制本身可調諧的參數眾多,我們先藉由溫度設定點追蹤探討出,只調諧權重值即可將系統控制在我們所想要的規格裡,再將此結論應用到干擾消除中也附合預期的效果,最後再將調諧好的最佳參數控制混合能源系統。
In the last few years, since petroleum crisis happened, the control, storage and exploitation become a great urgency. This research put forward a pattern of generating electric power. It uses wind turbine and proton exchange membrane fuel cell to meet the demand of load. The surplus of wind energy will provide electrolyzer with electrolysis of liquid water into hydrogen gas and reserve it by tank for the demand of fuel cell. This device can reserve electric energy effectively. However, in operating stage, the excess of instant demand of fuel cell current will make cell temperature go beyond the operating limit and bring about oxygen starvation phenomena. When cell temperature is higher than operating range, it will cause dehydration and fracture of proton exchange membrane. Excessively higher, fuel cell will lose performance and oxygen starvation phenomena will damage patron exchange membrane. No doubt we should take temperature and oxygen excess ratio seriously.
This research brings up scheme for model predictive control. Cooling water flow rate and air flow rate will hold cell temperature and oxygen excess ratio on proper operating point to ensure system performance. Because model predictive control can tune numerous parameters, through set point tracking, we can control system within specification merely by tuning weights. Further, applying this theory to disturbance suppression also meets the expectation. In conclusion, put the best tuned parameters into hybrid energy system.
目 錄

中文摘要 ..................................i
英文摘要 ..................................ii
誌謝 ..................................iv
目錄 ..................................v
表目錄 ..................................vii
圖目錄 ..................................viii
符號說明 ..................................x

第一章 緒論
1-1 前言 1
1-2 風力發電機 3
1-2.1 風力發電原理 3
1-3 燃料電池 5
1-3.1 燃料電池的種類 5
1-3.2 質子交換膜燃料電池的作動原理 8
1-3.3 質子交換膜燃料電池的優點 10
1-4 文獻回顧 11

第二章 數學模式的建立
2-1 前言 13
2-2 數學模式之假設 16
2-3 陰陽極動態方程式 17
2-4 極化曲線經驗式 19
2-4.1 活化過電位經驗式 21
2-4.2 歐姆過電位經驗式 24
2-4.3 電池組的輸出電壓與電化學效率 26
2-5 能量平衡方程式 27
2-6 風力渦輪發電機動態方程式 30
2-7 水電解器動態方程式 32

第三章 質子交換膜燃料電池的模擬與控制
3-1 數值分析 34
3-2 模擬燃料電池起動階段 37
3-3 模擬燃料電池負載改變階段 39
3-4 控制問題的浮現與系統操作點的選定 42
3-4.1 前言 42
3-4.2 溫度的控制問題 42
3-4.3 氧氣過量比控制問題 47
3-5 操作變數 48
3-5.1 前言 48
3-5.2 操作變數的模擬測試 49
3-6 模式預測控制 53
3-6.1 前言 53
3-6.2 模式預測控制演算法的策略 54
3-6.3 非線性模式預測控制 56
3-7 SISO溫度設定點追蹤 58
3-7.1 設定點追蹤控制策略 58
3-7.2 設定點追蹤控制器參數的調諧 61
3-7.3 設定點追蹤結果與討論 65
3-8 干擾消除 66
3-8.1 干擾消除的控制策略 66
3-8.2 干擾消除控制器參數的調諧 73
3-8.3 干擾消除控制器參數調諧的結果與討論 81
3-8.4 操作變數的限制 82
第四章 混合能源系統的設計與控制
4-1 前言 88
4-1.1 風能與產氫速率的數值分析 89
4-2 混合能源系統的設計概念 90
4-3 混合能源系統的模擬與控制 92
4-3.1 混合能源系統的模擬 92
4-3.2 溫度與氧氣過量比的控制 97

第五章 總結 100

參考文獻 102
作者簡介 104
參考文獻


1 . Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 1991. Polymer
electrolyte fuel cell model. Journal of The Electrochemical Society
138 ,2334-2342.
2. Fuller, T. F., Newman, J., 1993. Water and thermal management in solid-
polymer-electrolyte fuel cells. Journal of The Electrochemical Society
140,1218-1225.
3. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P.
R., Rodrigues A.,1994. Parametric modeling of the performance of a 5-kw
proton exchange membrane fuel cell stack. Journal of Power Sources 49,
349-356.
4. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P.
R.,1995.Performance modeling of the Ballard Mark IV solid polymer
electrolyte fuel cell.Journal of The Electrochemical Society 142, 1-8.
5. Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P.
R.,1995.Performance modeling of the Ballard Mark IV solid polymer
electrolyte fuel cell.Journal of The Electrochemical Society 142, 9-15.
6. Amphlett, J. C., Mann, R. F., Peppley, B. A., Roberge, P. R.,
Rodrigues, A., 1996. A model predicting transient responses of proton
exchange membrane fuel cells.Journal of Power Sources 61, 183-188.
7. Khan, M. J., Iqbal, M. T., 2005. Dynamic modeling and simulation of a
fuel cellgenerator. Fuel Cells May 1, 97-104.
8. Khan, M. J., Iqbal, M. T., 2005. Modeling and analysis of electrochemical,
thermal, and reactant flow dynamics for a PEM fuel cell system. Fuel
Cells May4, 463-475.
9. Yi, J. S., Nguyen, T. V.,1998. An along-the-channel model for proton
echange membrane fuel cells. Journal of The Electrochemical Society 145,
1149-1159.
10. Laurencelle, F., Chahin, R., Hamelin, J., Agbossou, K., Fournier, M.,
Bose, T. K.,Laperriere, A., 2001. Characterization of a Ballard MK5-E
proton exchange membrane fuel cell stack. Fuel Cells Journal 1, 66-71.
11. Hamelin, J., Agbossou, K., Laperriere, A., Laurencelle, F., Bose, T. K.,
2001.Dynamic behavior of a PEM fuel cell stack for stationary applications.
International Journal of Hydrogen Energy 26, 625-629.
12. Kim, J., Lee, S. M., Srinivasan, S., Chamberlin, C. E., 1995. Modeling of
proton exchange membrane fuel cell performance with an empirical equation.
Journal of The Electrochemical Society 142, 2670-2674.
13. M. J. Khan, M. J. Iqbal, 2005. Dynamic modeling and simulation of a small
wind-fuel cell hybrid energy system. Renewable energy.30, 421-439.
14. M. J. Iqbal,2003. Simulation of a small wind fuel cell hybrid energy
system.Renewable energy.28,511-522.
15. J. Larminie, A. Dicks, Fuel Cell Systems Explained, John wiley&sons Ltd,
West Sussex, England,2001 .
16. Wangner, N., 2002. Characterization of membrane electrode assemblies in
polymer electrolyte fuel cells using a.c. impedance spectroscopy.
Journal of Applied Electrochemistry 32, 859-863.
17. Mann R. F., Amphlett J. C., Hooper M. I., Jensen H. M., Peppley B. A.,
Roberge P. R.,2000. Development and application of a generalised steady-
state electrochemical model for a PEM fuel cell. Journal of Power Sources
86 , 173-180.
18. Incoropera, F. P., 1999. Liquid cooling of electronic devices by single-
phaseconvection. Wiley.
19. Chylla, R. W., Haase, D. R., 1993. Temperature control of semibatch
polymerization reactors. Computers & Chemical Engineering vol.17, 257-264.
20. Southwest Windpower Inc., 2131 North First Street, Flagstaff, AZ 86004,
USA.URL: http:// www.windenergy.com.
21. Kuo B.C., Automatic Control Systems. 7th ed. Englewood Cliffs, NJ:
Prentice Hall; 1995.
22. Sapru K, Stetson NT, Ovshinsky SR. Development of a small scale hydrogen
production storage system for hydrogen applications. Proceedings of the
Intersociety Energy Conversion Engineering Conference, vols. 3–4. 1997.
23. Ulleberg O. Stand-alone power systems for the future: optimal design,
operation and control of solar–hydrogen energy systems. PhD thesis,
Norwegian University of Science and Technology, December 1998
24. Pukrushpan J. T., Peng H., Stefanopoulou A.G. 2004.Control -oriented
modeling and analysis for automotive fuel cell systems.Transactions of
the ASME 126 ,14-25
25. Pukrushpan J. T., Peng H., Stefanopoulou A.G. 2004.Control of fuel cell
breathing. IEEE Control System Magazine , 30-46.
26. Pukrushpan, J. T., Peng, H., Stefanopoulou, A.G..2002. Modeling and
control for PEM fuel cell stack system. Proceedings of the American
Control Conference ,Anchorage , AK May 8-10.
27. Yi, J. S.,and Nguyen, T. V.,1998,An Along-the-Channel Model for Proton
Exchange Membrane Fuel Cells, J. Electrochem. Soc.,145(4), pp.1149-1159.
28. Sun J., Kolmanovsky I.,2004. Load governor for fuel cell oxygen starvation
protection : a robust nonlinear reference governor approach. Proceeding
of the 2004 American Control Conference , 828-833
29. 黃鎮江, 2003.燃料電池, 全華科技圖書股份有限公司
30. 張希良,2007.風力發電技術,新文京開發
31. 林昇佃、余子隆、張幼珍、翁芳柏、李碩仁、林育才、吳和生、魏榮宗、
林修正、賴子珍、曾盛恕、詹世宏合著, 2004. 燃料電池:新世紀能源,
滄海書局
32. 劉家和, 2005. 質子交換膜燃料電池系統控制, 國立台灣科技大學化學工程系
碩士學位論文
33. 趙皇源,2006.質子交換膜燃料電池系統溫度控制,國立台灣科技大學化學
工程系碩士學位論文.
34. 陳朝煒,2005. Pontryagin控制方法在生化反應器暨管式流動反應器上之應
用,國立雲林科技大學化學工程系碩士學位論文
35. 李豪業,2000,非線性不穩定程序之多重線性模式預測控制,長庚大學碩
士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊