(3.235.25.169) 您好!臺灣時間:2021/04/20 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張漢威
研究生(外文):Han-Wei Chang
論文名稱:功能性四氧化三鐵-聚乙烯亞胺磁性奈米微粒在電流式葡萄糖生物感測器的應用
論文名稱(外文):Application of functional iron oxide-polyethyleniminemagnetic nanoparticles for amperometric glucose biosensor
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:葡萄糖生物感測器網印電極四氧化三鐵聚乙烯亞胺循環伏安法計時安培法
外文關鍵詞:Glucose biosensorChronoamperometryCyclic voltammetryPolyethylenimineFe3O4Screen-printed electrodes
相關次數:
  • 被引用被引用:4
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中 文 摘 要
本研究係利用功能性四氧化三鐵-聚乙烯亞胺奈米微粒 (Fe3O4–PEI) 結合電子傳遞介質–赤血鹽與葡萄糖氧化酵素 (glucose oxidase, GOD),以滴覆乾燥的方式修飾於網印電極上 (screen-printed elec- trodes, SPEs),進而製備成電流式葡萄糖酵素感測電極。文中利用循環伏安法 (cyclic voltammetry, CV) 及計時安培法 (chronoamperometry, CA) 針對 SPEs 之修飾過程及電化學特性進行分析。結果顯示:經由Fe3O4–PEI修飾的電極,其氧化還原反應呈現準可逆與典型的擴散控制行為,且Fe3O4–PEI會提升電流訊號,是因為它的高親水性與可以在生物分子中扮演奈米級的電極。此葡萄糖生物感測器亦呈現快速應答、高靈敏度 (約 0.33�n�嫀/mM)、以及寬廣之線性應答濃度 (可達1,000 mg/dl)。
Abstract
An amperometric glucose biosensor was successfully constructed by simply drop-coating iron oxide-polyethylenimine (Fe3O4-PEI) and ferri- cyanide (as a mediator) onto screen-printed electrodes (SPEs), and then layering-on glucose oxidase (GOD). The electrochemical characteristics of the modified SPEs were analyzed by cyclic voltammetry (CV), electro- chemical impedance spectroscopy (EIS) and chronoamperometry (CA). Results showed that the redox reaction at Fe3O4-PEI modified SPEs was quasi-reversible and demonstrated a typical diffusion-limited behavior. In addition, Fe3O4-PEI could enhance the response current of glucose biosensor because of its high degree of hydrophilicity and acting like nanoscaled electrodes for the biomolecules. The glucose biosensors also exhibit a relatively fast response and high sensitivity (ca. 0.33�n�嫀/mM) with a wide linear concentration range up to 1000 mg/dl of glucose.
目 錄
頁次
中文摘要 I
英文摘要 II
目 錄 IV
表 目 錄 VII
圖 目 錄 VIII
符號說明 IX

第 一 章 緒論 1
1.1 前言 1

第 二 章 文獻回顧與研究動機 4
2.1 葡萄糖生物感測器的發展史 4
2.2 電子傳遞介質 5
2.3 網印電極 (screen-printed electrodes, SPEs) 6
2.4 奈米顆粒修飾性生物感測器 8
2.5 磁性奈米顆粒修飾性生物感測器 9
2.6 polyethylenimine (PEI) 於生物感測器之應用 11
2.7 實驗動機與目的 17

第 三 章 電化學理論與分析方法 19
3.1 電化學理論 19
3.1.1 電化學反應 19
3.1.2 法拉第定律 19
3.1.3 電雙層與電極-溶液界面 21
3.2 電化學分析方法 23
3.2.1 循環伏安法 (cyclic voltammetry, CV) 23
3.2.2 計時安培法 (chronoampermetry, CA) 25
3.2.3 電化學阻抗分析法 (electrochemical impedance spectro- scopy,
EIS) 26

第 四 章 材料與實驗方法 32
4.1 藥品與材料 32
4.2 儀器與設備 32
4.2.1 量測儀器 32
4.2.2 其他設備 33
4.3 實驗架構
34
4.4 實驗步驟 35
4.4.1 Fe3O4-PEI 奈米微粒之製備 36
4.4.2 評估 Fe3O4-PEI 奈米微粒在網印電極上之電化學特性 37
4.4.3 Ferri 和Ferri/Fe3O4-PEI 奈米微粒之掃描速率的動力學參數 38
4.4.4 Ferri/Fe3O4-PEI 奈米微粒之葡萄糖感測器的最適化條件之
Ferri/Fe3O4-PEI 奈米微粒之覆蓋量 39
4.4.5 Ferri/Fe3O4-PEI奈米微粒葡萄糖感測器的最適化條件之電位 40
4.4.6 Ferri/Fe3O4-PEI奈米微粒葡萄糖感測器的最適化條件之酵素滴覆量 41
4.4.7 Ferri/Fe3O4-PEI奈米微粒葡萄糖感測器的最適化條件之pH 42
4.4.8 比較Ferri/GOD、Ferri-Fe3O4/GOD、Ferri/PEI-Fe3O4/GOD修飾性
SPEs 於葡萄糖感測器之檢量線 43

第 五 章 結果與討論 45
5.1 評估Fe3O4-PEI磁性奈米微粒在網印電極上之電化學特性 45
5.1.1 評估Fe3O4-PEI磁性奈米微粒在網印電極上無電子傳遞介質下之電化學
特性 45
5.1.2 評估Ferri/Fe3O4-PEI磁性奈米微粒在網印電極上之電極修飾過程的界
面現象 47
5.1.3 評估Ferri/Fe3O4-PEI奈米微粒在葡萄糖氧化酵素網印電極上的催化特
性 50
5.2 Ferri 和 Ferri/Fe3O4-PEI 奈米微粒之改變不同掃描速率並探討動力
學參數 52
5.3 Ferri/Fe3O4-PEI 奈米微粒於葡萄糖感測器的最適化條件 55
5.3.1 最適化Ferri/Fe3O4-PEI覆蓋量 55
5.3.2 最適化電位 57
5.3.3 最適化酵素滴覆量 59
5.3.4 最適化pH 61
5.4 比較Ferri/GOD、Ferri/Fe3O4/GOD、Ferri/Fe3O4-PEI/GOD 修飾性
SPEs 於葡萄糖感測器之檢量線 63
5.6 Ferri/Fe3O4-PEI/GOD 修飾性SPEs與其他奈米微粒修飾性電極之葡萄
糖生物感測器之性質比較 66

第 六 章 結論 68

參考文獻 69


































表目錄
頁次
表 2.1 利用不同修飾物修飾四氧化三鐵奈米微粒並加以運用於不同領域 12
表 2.2 利用不同修飾物修飾四氧化三鐵奈米微粒在生物感測器上的應用 13
表 5.1 修飾性SPEs的動力學參數 53
表 5.2 不同修飾性 SPEs 葡萄糖感測器性質之比較 65
表 5.3 不同奈米微粒修飾性葡萄糖生物感測器之性質探討 67
















圖目錄
頁次
圖 1.1 生物感測器的示意圖 2
圖 2.1 第一代葡萄糖生物感測器反應機制圖 4
圖 2.2 第二代葡萄糖生物感測器的反應機制圖 6
圖 2.3 網印電極示意圖 7
圖 2.4 polyethylenimine (PEI) 結構圖 15
圖 3.1 電雙層示意圖 22
圖 3.2 循環伏安法原理示意圖;(a) 電位控制,(b) 電流響應 23
圖 3.3 計時安培法原理示意圖;(a) 電位階躍,(b) 電流響應 27
圖 3.4 (a) 電極與溶液的介面及整體溶液 (b) 電子電路圖 28
圖 3.5 典型的等效電路圖形 29
圖 3.6 經修正後的等效電路圖 30
圖 3.7 典型的奈式圖形 30
圖 4.1 研究架構流程圖 34
圖 5.1 循環伏安圖:(a) Fe3O4-PEI修飾性 SPEs滴入PBS (pH = 7,0.1M )測試;(b)
Fe3O4-PEI/GOD 修飾性 SPEs滴入葡萄糖溶液 (200mg/dl) 測試。操作條件:掃
描速率為 50 mV/s。 46
圖 5.2 循環伏安圖:(a) Ferri 修飾性 SPEs;(b) Ferri/GOD 修飾性 SPEs;(c)
Ferri/Fe3O4-PEI 修飾性 SPEs;(d) Ferri/Fe3O4-PEI/ GOD 修飾性 SPEs。分
別滴入PBS (pH = 7,0.1 M) 測試。操作條件:掃描範圍為-0.8∼+0.8 V;
掃描速率為 50 mV s-1。 49
圖 5.3 循環伏安圖:(a)(b) Ferri/Fe3O4-PEI/GOD 修飾性 SPEs分別滴入PBS (pH =
7、0.1 M) 與滴入葡萄糖溶液 (200 mg/dl) 測試。操作條件:掃描速率為 50
mV/s。 51
圖 5.4 循環伏安圖:(A) Ferri修飾性SPEs;(B) Ferri/Fe3O4-PEI 修飾性 SPEs
分別滴入PBS (pH = 7,0.1 M) 測試,掃描速率由 (a) 至 (h) 分別為: 5 、
10、20、40、60、100、150、200 mV/s。(A)(B)嵌入之圖為掃描速率開根號對波
峰電流的作圖。 54
圖 5.5 Fe3O4-PEI奈米微粒添加量對計時安培法 (CA) 之影響 56
圖 5.6 不同的應用電位對計時安培法 (CA) 之影響 58
圖 5.7 不同的酵素滴覆量對計時安培法 (CA) 之影響 60
圖 5.8 不同的 pH 之葡萄糖溶液對計時安培法 (CA) 之影響 62
圖 5.9 不同的Ferri-GOD、Ferri-Fe3O4/GOD、Ferri/Fe3O4-PEI/GOD 修飾性SPEs以不同
葡萄糖濃度依計時安培法 (CA) 進行檢量線實驗 65
參考文獻
[1]. Arya S. K., Datta M., Malhotra B. D., 2008, “Recent advances in cholesterol biosensor“ Biosensors and Bioelectronics, vol. 23, pp. 1083–1100.
[2]. 田蔚城,1996,生物技術,九州圖書,台北市,台灣,pp. 247-262。
[3]. Shan D., Yao W., Xue H., 2007, “Electrochemical study of ferro- cenemethanol-modified layered double hydroxides composite matrix: Application to glucose amperometric biosensor” Biosensors and Bioelectronics, vol. 23, pp. 432–437.
[4]. Miquel A-S., Arben M., Salvador A., 2000, “Configurations used in the design of screen-printed enzymatic biosensors. a review” Sen- sors and Actuators B, vol. 69, pp. 153–163.
[5]. Xu X., Liu S., Ju H., 2004, “Disposable biosensor based on a hemoglobin colloidal gold-modified screen-printed electrode for determination of hydrogen peroxide” IEEE Sensors Journal, vol. 4, no. 4, pp. 390-394.
[6]. Tangkuaram T., Ponchio C., Kangkasomboon T., Katikawong P., Veerasai W., 2007, “Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan” Biosensors and Bioelectronics, vol. 22, pp. 2071–2078.
[7]. Qiu J., Peng H., Liang R., 2007, “Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors” Electrochemistry Communi- cations, vol. 9, pp. 2734–2738.
[8]. Lambrechts M., Sansen W., 1992, Biosensors: Microelectrochemical devices, Institute of Physics, London, IOP publishing Ltd, pp. 59-66
[9]. Dai Z., Bao J., Yang X., Ju H., 2008, “A bienzyme channeling glucose sensor with a wide concentration range based on co- entrapment of enzymes in SBA-15 mesopores” Biosensors and Bio- electronics, vol. 23, pp. 1070–1076.
[10]. Shen J., Dudik L., Liu C-C., 2007, “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor“ Sensors and Actuators B, vol. 125, pp. 106–113.
[11]. Zheng L., Xiong L., Li J., Li X., Sun J., Yang S., Xia J., 2008, “Synthesis of a novel ��-cyclodextrin derivative with high solubility and the electrochemical properties of ferrocene-carbonyl-��-cyclo- dextrin inclusion complex as an electron transfer mediator” Elec- trochemistry Communications, vol. 10, pp. 340–345.
[12]. Noci S.d., Frasconi M., Favero G., Tosi M., Ferri T., Mazzei F., 2007, “Electrochemical kinetic characterization of redox media- ted glucose oxidase reactions: a simplified approach” Electro- analysis, vol. 20, no. 2, pp. 163 – 169.
[13]. Anik U., Timur S., Cubukcu1M., Merkoci A., 2007, “The usage of a bismuth film electrode as transducer in glucose biosensing” Micro- chim Acta, vol. 160, pp. 269–273.
[14]. Liu H., Zhangt Z., Zhang X., Qi D, Liu Y, Yu T., Deng J., 1997, “A phenazine methosulphate-mediated sensor sensitive to lactate based on entrapment of lactate oxidase and horseradish peroxidase in composite membrane of poly(viny1 alcohol) and regenerated silk fibroin” Eleclrochimica Acta, vol. 42, no. 3, pp. 349-355.
[15]. Lau K.T., Fortescu S.A.L.de, Murphy L.J., Slater J.M., 2003, “Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators” Electroanalysis, vol. 15, No. 11, pp. 975-981.
[16]. Mao L., Yamamoto K., 2000, “Glucose and choline on-line biosen- sors based on electropolymerized Meldola’s blue” Talanta, vol. 51, pp. 187–195.
[17]. Kosela E., Elzanowska H., Kutner W., 2002, “Charge mediation by ruthenium poly(pyridine) complexes in ‘second-generation’ glu- cose biosensors based on carboxymethylated ��-cyclodextrin poly- mer membranes” Analytical and Bioanalytical Chemistry, vol. 373, pp. 724–734.
[18]. Gros P., Durliat H., Comtat M., 2000, “Use of polypyrrole film containing Fe(CN)63- as pseudo-reference electrode: application for amperometric biosensors” Electrochimica Acta, vol. 46, pp. 643– 650.
[19]. Dock E., Ruzgas T., 2002, “Screen-printed carbon electrodes modified with cellobiose dehydrogenase: amplification factor for catechol vs. reversibility of ferricyanide” Electroanalysis, vol. 15, No. 5-6, pp. 492-498.
[20]. Mottos I.L.de, Gorton L., Ruzgas T., 2003, “Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes” Biosensors and Bioelectronics, vol. 18, pp. 193-200.
[21]. O’Halloran M.P., Pravda M., Guilbault G.G., 2001, “Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors” Talanta, vol. 55, pp.605–611.
[22]. Crouch E., Cowell D.C., Hoskins S., Pittson R.W., Hart J.P., 2005, “A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink” Biosensors and Bioelectronics, vol. 21, pp. 712–718.
[23]. Dai Z., Fang M., Bao J., Wang H., Lu T., 2007, “An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes” Analytica Chimica Acta, vol. 591, pp. 195–199.
[24]. Javir G.R., Asuncion A-L.M., Munoz F.J., 2007, “Screen-printed biosensors for glucose determination in grape juice” Biosensors and Bioelectronics, vol. 22, pp. 1517–1521.
[25]. Lee C.H., Wang S-C., Yuan C-J., Wen M.F., Chang K-S., 2007, “Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nano- tube casting on screen-printed carbon electrodes “Biosensors and Bioelectronics, vol. 22, pp. 877–884.
[26]. Yu J., Yu D., Zhao T., Zeng B., 2008, “Development of ampero- metric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix” Talanta, vol. 74, pp. 1586–1591.
[27]. Welch C. M., Compton R. G., 2006, “The use of nanoparticles in electroanalysis: a review” Analytical and Bioanalytical Chemistry, vol. 384, pp. 601–619.
[28]. Kang X., Mai Z., Zou X., Cai P., Mo J., 2008, “Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid” Talanta, vol. 74, pp. 879–886.
[29]. Wu J., Zou Y., Gao N., Jiang J., Shen G., Yu R., 2005, “Electroche- mical performances of C/Fe nanocomposite and its use for mediator-free glucose biosensor preparation” Talanta, vol. 68, pp. 12–18.
[30]. Wu S., Wu J., Liu Y., Ju H., 2007, “Conductive and highly catalytic nanocage for assembly and improving function of enzyme” Chemistry of Materials, vol. 20, pp. 1397–1403.
[31]. Asuri P., Karajanagi S.S., Sellitto E., Kim D.Y., Kane R.S., Dordick J. S., 2006, “Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations” Biotechnology and Bioen- gineering, vol. 95, no. 5, pp. 804-811.
[32]. Zhang F.F., Wan Q., Wang X.L., Sun Z.D., Zhu Z.Q., Xian Y.Z., Jin L.T., Yamamoto K., 2004, “Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer medi- ator for the determination of glucose in rat brain coupled to in vivo microdialysis” Journal of Electroanalytical Chemistry, vol. 571, pp. 133–138.
[33]. Thomson T., Toney M. F., Raoux S., Lee S. L., Sun S., Murray C. B., Terris B. D., 2004, “Structural and magnetic model of self- assembled FePt nanoparticle arrays” Journal of Applied Physice, vol. 96, no. 2, pp. 1197-1201.
[34]. An X., SU Z., 2001, “Characterization and application of high magnetic property chitosan particles characterization of chitosan particles” Journal of Applied Polymer Science, vol. 81, pp. 1175- 1181.
[35]. Gee S. H., Hong Y. K., Erickson D. W., Park M. H., 2003, “Synthe- sis and aging effect of spherical magnetite Fe3O4 nanoparticles for biosensor applications” Journal of Applied Physice, vol. 93, no. 10. pp. 7560-7562.
[36]. Lin M. S., Leu H. J., 2005, “A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide” Electroanalysis, vol.17, no. 22, pp. 2068 – 2073.
[37]. Zhang H.L., Lai G .S., Han D.Y., Yu A.M., (2008), “An amperome- tric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres” Analytical and Bioanalytical Chemistry, vol. 390, pp. 971–977.
[38]. Hu F., Li Z., Tu C., Gao M., 2007, “Preparation of magnetite nano- crystals with surface reactive moieties by one-pot reaction” Journal of Colloid and Interface Science, vol. 311, pp. 469–474.
[39]. Denkbas E.B., Kilicay E., Birlikseven C., Ozturk E., 2002, “Magne- tic chitosan microspheres: preparation and characterization” Reactive and Functional Polymers, vol. 50, pp. 225–232.
[40]. Lee J., Isobe T., Senna M., 1996, “Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH” Journal of Colloid and Interface Science, vol. 177, pp. 490–494.
[41]. Pardoe H., Wanida C.A., Pierre T.G.S., Jon D., 2001, “Structural and magnetic properties of nanoscale iron oxide particles synthe- sized in the presence of dextran or polyvinyl alcohol” Journal of Magnetism and Magnetic Materials, vol. 225, pp. 41-46.
[42]. Lin H., Watanabe Y., Kimura M., Hanabusa K., Shirai H., 2002, “Preparation of magnetic poly(vinyl alcohol) (PVA) materials by In Situ synthesis of magnetite in a PVA matrix” Journal of Applied Polymer Science, vol. 87, pp. 1239–1247
[43]. Xia Z., Wang G., Tao K., Li J., 2005, “Preparation of magnetite– dextran microspheres by ultrasonication” Journal of Magnetism and Magnetic Materials, vol. 293, pp. 182–186.
[44]. Osaka T., Matsunaga T., Nakanishi T., Arakaki A., Niwa D., Iida H., (2006), “Synthesis of magnetic nanoparticles and their application to bioassays“ Analytical and Bioanalytical Chemistry, vol. 384, pp. 593–600.
[45]. Zhao G., Feng J.J., Zhang Q.L., Li S.P., Chen H.Y., (2005), “Synthesis and characterization of prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction
of H2O2” Chemistry of Materials, vol.17, pp.3154-3159.
[46]. Qiu J.D., Guo J., Liang R.P., Xiong M., 2007, “A nanocomposite chitosan based on ferrocene-modified silica nanoparticles and carbon nanotubes for biosensor application” Electroanalysis, vol. 19, no. 22, pp. 2335 – 2341.
[47]. Harris L.A., Goff J. D., Carmichael A.Y., Riffle J. S., Harburn J. J., Pierre T.G. S., Saunders M., 2003, “Magnetite nanoparticle dispersions stabilized with triblock copolymers” Chemistry of Materials,vol. 15, pp. 1367-1377.
[48]. Tang D., Yuan R., Chai Y., 2006, “Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay” Journal of Physica Chemistry B , vol. 110, pp. 11640-11646.
[49]. Pu H.T., Jiang F.J., Yang Z.L., 2006, “ Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite” Materials Chemistry and Physics, vol. 100, pp. 10–14.
[50]. Steitz B., Hofmann H., Kamau S.W., Hassa P.O., HottigerM.O., Rechenberg B.V., Hofmann-Amtenbrink Magarethe., Petri-FinkA., 2007, “Characterization of PEI-coated superparamagnetic iron oxidenanoparticles for transfection: Size distribution, colloidal properties and DNA interaction” Journal of Magnetism and Magnetic Materials, vol. 311, pp.300–305.
[51]. Qu S., Wang J., Kong J., Yang P., ChenG., 2006, “Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing” Talanta, vol. 71, pp. 1096–1102.
[52]. Lai G.S., Zhang H.L., Han D.Y., 2008, “A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode” Sensors and Actuators B, vol. 129, pp. 497–503.
[53]. Dimakis V.T., Gavalas V.G., Chaniotakis N.A., 2002, “Polyelec- trolyte-stabilized biosensors based on macroporous carbon elec- trode” Analytica Chimica Acta, vol. 467, pp. 217–223.
[54]. Merchant S.A., Glatzhofer D.T., Schmidtke D.W., 2007, “Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine)” Langmuir, vol. 23, pp. 11295-11302
[55]. Andersson M.M., Rajni H.K., 1999, “Protein stabilising effect of polyethyleneimine” Journal of Biotechnology, vol. 72 pp. 21–31.
[56]. Jezkova J., Iwuoha E.I., Smyth M.R., Vytras K., 1997, “Stabiliza- tion of an osmium bis-bipyridyl polymer-modified carbon paste amperometric glucose biosensor using polyethyleneimine” Elec- troanalysis, vol. 9, no. 13, pp. 978-984.
[57]. Qian J.M., Suo A.L., Yao Y., Jin Z.H., 2004, “Polyelectrolyte- stabilized glucose biosensor based on woodceramics as electrode” Clinical Biochemistry, vol. 37, pp. 155– 161.
[58]. Spohn U., Navasaiah D., Gorton L., 1996, “The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for l-lactate” Electroanalysis, vol. 8, no. 6, pp. 507-514.
[59]. Fernando L.G., Betancor L., Hidalgo A., Gisela D.O., Cesar Mateo, Roberto F.L., Jose M. G., 2006, “Stabilization of different alcohol oxidases via immobilization and post immobilization techniques” Enzyme and Microbial Technology, vol. 40, pp. 278–284.
[60]. McMahon C.P., Rocchitta G., Kirwan S.M., Killoran S.J., Serra P.A., Lowry J.P., O’Neill R.D., 2007, “Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity” Biosensors and Bioelectronics, vol. 22, pp. 1466–1473.
[61]. Shim M., Javey A., Kam N.W.S., Dai H., 2001, “Polymer function- alization for air-stable n-type carbon nanotube field-effect transis- tors” Journal of The American Chemical Society, vol. 123, pp. 11512-11513.
[62]. Rubianes M.D., Rivas G.A., 2007, “Dispersion of multi-wall car- bon nanotubes in polyethylenimine: A new alternative for prepar- ing electrochemical sensors” Electrochemistry Communications, vol. 9, pp. 480–484.
[63]. 胡啟章,2002,電化學原理與方法,初版,五南圖書出版股份有限公司,台北,台灣,p 101-104。
[64]. Eggins, B. R., 2002, “Chemical Sensors and Biosensors” John Wiley and Sons Ltd., England, pp. 27-38, pp. 154-160.
[65]. Park S.M., Yoo J.S., 2003, “Electrochemical impedance spectrosco- py for better electrochemical measurements” Analytical chemistry, pp. 455A-461A.
[66]. Bard A. J., Faulkner L. R., 1980, “Electrochemical methods: funda- mentals and application” Wiley, New York, pp. 156-159, pp. 368- 387.
[67]. Stoynov Z. B., Grafov B. M., Savova-Stoynova B.S., Elkin V. V., 1991, Electrochemical impedance. Nauka, Moscow.
[68]. Hsu C. H., Mansfel F., 2001, “Technical note: concerning the con- version of the constant phase element parameter Y0 into a capaci- tance” Corrosion, vol. 57, pp. 747-748
[69]. Foxx D. Kalu E.E., 2007, “Amperometric biosensor based on ther- mally activated polymer-stabilized metal nanoparticles” Electro- chemistry Communications, vol. 9, pp. 584–590.
[70]. Zhang S., Wang N., Yu H., Niu Y., Sun C., 2005, “Covalent attach- ment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor” Bioelectrochemistry, vol. 67, pp. 15– 22.
[71]. Kang X., Mai Z., Zou X., Cai P., Mo J., 2008, “Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid” Talanta, vol. 74, pp. 879–886.
[72]. Yang M., Jiang J., Yang Y., Chen X., Shen G., Yu R., 2006, “Car- bon nanotube/cobalt hexacyanoferrate nanoparticle – biopolymer system for the fabrication of biosensors” Biosensors and Bioelec- tronics, vol. 21, pp. 1791–1797.
[73]. Erlenkotter A., Kottbus M., Chemnitius G.C., 2000, “Flexible am- perometric transducers for biosensors based on a screen printed three electrode system” Journal of Electroanalytical Chemistry, vol. 481, pp. 82–94.
[74]. Zhao K., Zhuang S., Chang Z., Songm H., Dai L., He P., Fang Y., 2007, “Amperometric glucose biosensor based on platinum nano- particles combined aligned carbon nanotubes electrode” Electro- analysis, vol. 19, no. 10, pp. 1069 – 1074.
[75]. Shan D., Yao W., Xue H., 2006, “Amperometric detection of glu- cose with glucose oxidase immobilized in layered double hydro- xides” Electroanalysis, vol. 18, no. 15, pp. 1485 – 1491.
[76]. Guerrieri A., Cataldi T.R.I., Ciriello R., 2000, “The kinetic and ana- lytical behaviours of an l-lysine amperometric biosensor based on lysine oxidase immobilised onto a platinum electrode by co-cross- linking” Sensors and Actuators B, vol. 126, pp. 424–430.
[77]. 呂博文,2006,Fe3O4 奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究,國立雲林科技大學化學工程系所.
[78]. 彭姍翎,2008,以聚電解質修飾網印 電極之電流式葡萄糖生物感測,國立雲林科技大學化學工程系所.
[79]. 徐俊旭,2007,可棄式多層奈米碳管修飾性葡萄糖生物感測器之研究,國立雲林科技大學化學工程系所.
[80]. 張自華,2007,可棄式碳鐵奈米微粒修飾性葡萄糖生物感測器之研究,國立雲林科技大學化學工程系所,專題報告
[81]. 李建平,2008,基于Fe3O4/Au/GOx的新型磁性敏感膜葡萄糖传感器的研制,桂林工学院材料与化学工程系.
[82]. Zou Yongjin., Xiang C., Sun L.X., Xu F., 2008, “Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel” Biosensors and Bioelectronics, vol. 23. pp. 1010–1016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔