參考文獻
[1]. Arya S. K., Datta M., Malhotra B. D., 2008, “Recent advances in cholesterol biosensor“ Biosensors and Bioelectronics, vol. 23, pp. 1083–1100.
[2]. 田蔚城,1996,生物技術,九州圖書,台北市,台灣,pp. 247-262。
[3]. Shan D., Yao W., Xue H., 2007, “Electrochemical study of ferro- cenemethanol-modified layered double hydroxides composite matrix: Application to glucose amperometric biosensor” Biosensors and Bioelectronics, vol. 23, pp. 432–437.
[4]. Miquel A-S., Arben M., Salvador A., 2000, “Configurations used in the design of screen-printed enzymatic biosensors. a review” Sen- sors and Actuators B, vol. 69, pp. 153–163.
[5]. Xu X., Liu S., Ju H., 2004, “Disposable biosensor based on a hemoglobin colloidal gold-modified screen-printed electrode for determination of hydrogen peroxide” IEEE Sensors Journal, vol. 4, no. 4, pp. 390-394.
[6]. Tangkuaram T., Ponchio C., Kangkasomboon T., Katikawong P., Veerasai W., 2007, “Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan” Biosensors and Bioelectronics, vol. 22, pp. 2071–2078.
[7]. Qiu J., Peng H., Liang R., 2007, “Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors” Electrochemistry Communi- cations, vol. 9, pp. 2734–2738.
[8]. Lambrechts M., Sansen W., 1992, Biosensors: Microelectrochemical devices, Institute of Physics, London, IOP publishing Ltd, pp. 59-66
[9]. Dai Z., Bao J., Yang X., Ju H., 2008, “A bienzyme channeling glucose sensor with a wide concentration range based on co- entrapment of enzymes in SBA-15 mesopores” Biosensors and Bio- electronics, vol. 23, pp. 1070–1076.
[10]. Shen J., Dudik L., Liu C-C., 2007, “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor“ Sensors and Actuators B, vol. 125, pp. 106–113.
[11]. Zheng L., Xiong L., Li J., Li X., Sun J., Yang S., Xia J., 2008, “Synthesis of a novel ��-cyclodextrin derivative with high solubility and the electrochemical properties of ferrocene-carbonyl-��-cyclo- dextrin inclusion complex as an electron transfer mediator” Elec- trochemistry Communications, vol. 10, pp. 340–345.
[12]. Noci S.d., Frasconi M., Favero G., Tosi M., Ferri T., Mazzei F., 2007, “Electrochemical kinetic characterization of redox media- ted glucose oxidase reactions: a simplified approach” Electro- analysis, vol. 20, no. 2, pp. 163 – 169.
[13]. Anik U., Timur S., Cubukcu1M., Merkoci A., 2007, “The usage of a bismuth film electrode as transducer in glucose biosensing” Micro- chim Acta, vol. 160, pp. 269–273.
[14]. Liu H., Zhangt Z., Zhang X., Qi D, Liu Y, Yu T., Deng J., 1997, “A phenazine methosulphate-mediated sensor sensitive to lactate based on entrapment of lactate oxidase and horseradish peroxidase in composite membrane of poly(viny1 alcohol) and regenerated silk fibroin” Eleclrochimica Acta, vol. 42, no. 3, pp. 349-355.
[15]. Lau K.T., Fortescu S.A.L.de, Murphy L.J., Slater J.M., 2003, “Disposable glucose sensors for flow injection analysis using substituted 1,4-benzoquinone mediators” Electroanalysis, vol. 15, No. 11, pp. 975-981.
[16]. Mao L., Yamamoto K., 2000, “Glucose and choline on-line biosen- sors based on electropolymerized Meldola’s blue” Talanta, vol. 51, pp. 187–195.
[17]. Kosela E., Elzanowska H., Kutner W., 2002, “Charge mediation by ruthenium poly(pyridine) complexes in ‘second-generation’ glu- cose biosensors based on carboxymethylated ��-cyclodextrin poly- mer membranes” Analytical and Bioanalytical Chemistry, vol. 373, pp. 724–734.
[18]. Gros P., Durliat H., Comtat M., 2000, “Use of polypyrrole film containing Fe(CN)63- as pseudo-reference electrode: application for amperometric biosensors” Electrochimica Acta, vol. 46, pp. 643– 650.
[19]. Dock E., Ruzgas T., 2002, “Screen-printed carbon electrodes modified with cellobiose dehydrogenase: amplification factor for catechol vs. reversibility of ferricyanide” Electroanalysis, vol. 15, No. 5-6, pp. 492-498.
[20]. Mottos I.L.de, Gorton L., Ruzgas T., 2003, “Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes” Biosensors and Bioelectronics, vol. 18, pp. 193-200.
[21]. O’Halloran M.P., Pravda M., Guilbault G.G., 2001, “Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors” Talanta, vol. 55, pp.605–611.
[22]. Crouch E., Cowell D.C., Hoskins S., Pittson R.W., Hart J.P., 2005, “A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink” Biosensors and Bioelectronics, vol. 21, pp. 712–718.
[23]. Dai Z., Fang M., Bao J., Wang H., Lu T., 2007, “An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes” Analytica Chimica Acta, vol. 591, pp. 195–199.
[24]. Javir G.R., Asuncion A-L.M., Munoz F.J., 2007, “Screen-printed biosensors for glucose determination in grape juice” Biosensors and Bioelectronics, vol. 22, pp. 1517–1521.
[25]. Lee C.H., Wang S-C., Yuan C-J., Wen M.F., Chang K-S., 2007, “Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nano- tube casting on screen-printed carbon electrodes “Biosensors and Bioelectronics, vol. 22, pp. 877–884.
[26]. Yu J., Yu D., Zhao T., Zeng B., 2008, “Development of ampero- metric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix” Talanta, vol. 74, pp. 1586–1591.
[27]. Welch C. M., Compton R. G., 2006, “The use of nanoparticles in electroanalysis: a review” Analytical and Bioanalytical Chemistry, vol. 384, pp. 601–619.
[28]. Kang X., Mai Z., Zou X., Cai P., Mo J., 2008, “Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid” Talanta, vol. 74, pp. 879–886.
[29]. Wu J., Zou Y., Gao N., Jiang J., Shen G., Yu R., 2005, “Electroche- mical performances of C/Fe nanocomposite and its use for mediator-free glucose biosensor preparation” Talanta, vol. 68, pp. 12–18.
[30]. Wu S., Wu J., Liu Y., Ju H., 2007, “Conductive and highly catalytic nanocage for assembly and improving function of enzyme” Chemistry of Materials, vol. 20, pp. 1397–1403.
[31]. Asuri P., Karajanagi S.S., Sellitto E., Kim D.Y., Kane R.S., Dordick J. S., 2006, “Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations” Biotechnology and Bioen- gineering, vol. 95, no. 5, pp. 804-811.
[32]. Zhang F.F., Wan Q., Wang X.L., Sun Z.D., Zhu Z.Q., Xian Y.Z., Jin L.T., Yamamoto K., 2004, “Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer medi- ator for the determination of glucose in rat brain coupled to in vivo microdialysis” Journal of Electroanalytical Chemistry, vol. 571, pp. 133–138.
[33]. Thomson T., Toney M. F., Raoux S., Lee S. L., Sun S., Murray C. B., Terris B. D., 2004, “Structural and magnetic model of self- assembled FePt nanoparticle arrays” Journal of Applied Physice, vol. 96, no. 2, pp. 1197-1201.
[34]. An X., SU Z., 2001, “Characterization and application of high magnetic property chitosan particles characterization of chitosan particles” Journal of Applied Polymer Science, vol. 81, pp. 1175- 1181.
[35]. Gee S. H., Hong Y. K., Erickson D. W., Park M. H., 2003, “Synthe- sis and aging effect of spherical magnetite Fe3O4 nanoparticles for biosensor applications” Journal of Applied Physice, vol. 93, no. 10. pp. 7560-7562.
[36]. Lin M. S., Leu H. J., 2005, “A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide” Electroanalysis, vol.17, no. 22, pp. 2068 – 2073.
[37]. Zhang H.L., Lai G .S., Han D.Y., Yu A.M., (2008), “An amperome- tric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres” Analytical and Bioanalytical Chemistry, vol. 390, pp. 971–977.
[38]. Hu F., Li Z., Tu C., Gao M., 2007, “Preparation of magnetite nano- crystals with surface reactive moieties by one-pot reaction” Journal of Colloid and Interface Science, vol. 311, pp. 469–474.
[39]. Denkbas E.B., Kilicay E., Birlikseven C., Ozturk E., 2002, “Magne- tic chitosan microspheres: preparation and characterization” Reactive and Functional Polymers, vol. 50, pp. 225–232.
[40]. Lee J., Isobe T., Senna M., 1996, “Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH” Journal of Colloid and Interface Science, vol. 177, pp. 490–494.
[41]. Pardoe H., Wanida C.A., Pierre T.G.S., Jon D., 2001, “Structural and magnetic properties of nanoscale iron oxide particles synthe- sized in the presence of dextran or polyvinyl alcohol” Journal of Magnetism and Magnetic Materials, vol. 225, pp. 41-46.
[42]. Lin H., Watanabe Y., Kimura M., Hanabusa K., Shirai H., 2002, “Preparation of magnetic poly(vinyl alcohol) (PVA) materials by In Situ synthesis of magnetite in a PVA matrix” Journal of Applied Polymer Science, vol. 87, pp. 1239–1247
[43]. Xia Z., Wang G., Tao K., Li J., 2005, “Preparation of magnetite– dextran microspheres by ultrasonication” Journal of Magnetism and Magnetic Materials, vol. 293, pp. 182–186.
[44]. Osaka T., Matsunaga T., Nakanishi T., Arakaki A., Niwa D., Iida H., (2006), “Synthesis of magnetic nanoparticles and their application to bioassays“ Analytical and Bioanalytical Chemistry, vol. 384, pp. 593–600.
[45]. Zhao G., Feng J.J., Zhang Q.L., Li S.P., Chen H.Y., (2005), “Synthesis and characterization of prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction
of H2O2” Chemistry of Materials, vol.17, pp.3154-3159.
[46]. Qiu J.D., Guo J., Liang R.P., Xiong M., 2007, “A nanocomposite chitosan based on ferrocene-modified silica nanoparticles and carbon nanotubes for biosensor application” Electroanalysis, vol. 19, no. 22, pp. 2335 – 2341.
[47]. Harris L.A., Goff J. D., Carmichael A.Y., Riffle J. S., Harburn J. J., Pierre T.G. S., Saunders M., 2003, “Magnetite nanoparticle dispersions stabilized with triblock copolymers” Chemistry of Materials,vol. 15, pp. 1367-1377.
[48]. Tang D., Yuan R., Chai Y., 2006, “Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay” Journal of Physica Chemistry B , vol. 110, pp. 11640-11646.
[49]. Pu H.T., Jiang F.J., Yang Z.L., 2006, “ Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite” Materials Chemistry and Physics, vol. 100, pp. 10–14.
[50]. Steitz B., Hofmann H., Kamau S.W., Hassa P.O., HottigerM.O., Rechenberg B.V., Hofmann-Amtenbrink Magarethe., Petri-FinkA., 2007, “Characterization of PEI-coated superparamagnetic iron oxidenanoparticles for transfection: Size distribution, colloidal properties and DNA interaction” Journal of Magnetism and Magnetic Materials, vol. 311, pp.300–305.
[51]. Qu S., Wang J., Kong J., Yang P., ChenG., 2006, “Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing” Talanta, vol. 71, pp. 1096–1102.
[52]. Lai G.S., Zhang H.L., Han D.Y., 2008, “A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode” Sensors and Actuators B, vol. 129, pp. 497–503.
[53]. Dimakis V.T., Gavalas V.G., Chaniotakis N.A., 2002, “Polyelec- trolyte-stabilized biosensors based on macroporous carbon elec- trode” Analytica Chimica Acta, vol. 467, pp. 217–223.
[54]. Merchant S.A., Glatzhofer D.T., Schmidtke D.W., 2007, “Effects of electrolyte and pH on the behavior of cross-linked films of ferrocene-modified poly(ethylenimine)” Langmuir, vol. 23, pp. 11295-11302
[55]. Andersson M.M., Rajni H.K., 1999, “Protein stabilising effect of polyethyleneimine” Journal of Biotechnology, vol. 72 pp. 21–31.
[56]. Jezkova J., Iwuoha E.I., Smyth M.R., Vytras K., 1997, “Stabiliza- tion of an osmium bis-bipyridyl polymer-modified carbon paste amperometric glucose biosensor using polyethyleneimine” Elec- troanalysis, vol. 9, no. 13, pp. 978-984.
[57]. Qian J.M., Suo A.L., Yao Y., Jin Z.H., 2004, “Polyelectrolyte- stabilized glucose biosensor based on woodceramics as electrode” Clinical Biochemistry, vol. 37, pp. 155– 161.
[58]. Spohn U., Navasaiah D., Gorton L., 1996, “The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for l-lactate” Electroanalysis, vol. 8, no. 6, pp. 507-514.
[59]. Fernando L.G., Betancor L., Hidalgo A., Gisela D.O., Cesar Mateo, Roberto F.L., Jose M. G., 2006, “Stabilization of different alcohol oxidases via immobilization and post immobilization techniques” Enzyme and Microbial Technology, vol. 40, pp. 278–284.
[60]. McMahon C.P., Rocchitta G., Kirwan S.M., Killoran S.J., Serra P.A., Lowry J.P., O’Neill R.D., 2007, “Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity” Biosensors and Bioelectronics, vol. 22, pp. 1466–1473.
[61]. Shim M., Javey A., Kam N.W.S., Dai H., 2001, “Polymer function- alization for air-stable n-type carbon nanotube field-effect transis- tors” Journal of The American Chemical Society, vol. 123, pp. 11512-11513.
[62]. Rubianes M.D., Rivas G.A., 2007, “Dispersion of multi-wall car- bon nanotubes in polyethylenimine: A new alternative for prepar- ing electrochemical sensors” Electrochemistry Communications, vol. 9, pp. 480–484.
[63]. 胡啟章,2002,電化學原理與方法,初版,五南圖書出版股份有限公司,台北,台灣,p 101-104。
[64]. Eggins, B. R., 2002, “Chemical Sensors and Biosensors” John Wiley and Sons Ltd., England, pp. 27-38, pp. 154-160.
[65]. Park S.M., Yoo J.S., 2003, “Electrochemical impedance spectrosco- py for better electrochemical measurements” Analytical chemistry, pp. 455A-461A.
[66]. Bard A. J., Faulkner L. R., 1980, “Electrochemical methods: funda- mentals and application” Wiley, New York, pp. 156-159, pp. 368- 387.
[67]. Stoynov Z. B., Grafov B. M., Savova-Stoynova B.S., Elkin V. V., 1991, Electrochemical impedance. Nauka, Moscow.
[68]. Hsu C. H., Mansfel F., 2001, “Technical note: concerning the con- version of the constant phase element parameter Y0 into a capaci- tance” Corrosion, vol. 57, pp. 747-748
[69]. Foxx D. Kalu E.E., 2007, “Amperometric biosensor based on ther- mally activated polymer-stabilized metal nanoparticles” Electro- chemistry Communications, vol. 9, pp. 584–590.
[70]. Zhang S., Wang N., Yu H., Niu Y., Sun C., 2005, “Covalent attach- ment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor” Bioelectrochemistry, vol. 67, pp. 15– 22.
[71]. Kang X., Mai Z., Zou X., Cai P., Mo J., 2008, “Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid” Talanta, vol. 74, pp. 879–886.
[72]. Yang M., Jiang J., Yang Y., Chen X., Shen G., Yu R., 2006, “Car- bon nanotube/cobalt hexacyanoferrate nanoparticle – biopolymer system for the fabrication of biosensors” Biosensors and Bioelec- tronics, vol. 21, pp. 1791–1797.
[73]. Erlenkotter A., Kottbus M., Chemnitius G.C., 2000, “Flexible am- perometric transducers for biosensors based on a screen printed three electrode system” Journal of Electroanalytical Chemistry, vol. 481, pp. 82–94.
[74]. Zhao K., Zhuang S., Chang Z., Songm H., Dai L., He P., Fang Y., 2007, “Amperometric glucose biosensor based on platinum nano- particles combined aligned carbon nanotubes electrode” Electro- analysis, vol. 19, no. 10, pp. 1069 – 1074.
[75]. Shan D., Yao W., Xue H., 2006, “Amperometric detection of glu- cose with glucose oxidase immobilized in layered double hydro- xides” Electroanalysis, vol. 18, no. 15, pp. 1485 – 1491.
[76]. Guerrieri A., Cataldi T.R.I., Ciriello R., 2000, “The kinetic and ana- lytical behaviours of an l-lysine amperometric biosensor based on lysine oxidase immobilised onto a platinum electrode by co-cross- linking” Sensors and Actuators B, vol. 126, pp. 424–430.
[77]. 呂博文,2006,Fe3O4 奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究,國立雲林科技大學化學工程系所.[78]. 彭姍翎,2008,以聚電解質修飾網印 電極之電流式葡萄糖生物感測,國立雲林科技大學化學工程系所.
[79]. 徐俊旭,2007,可棄式多層奈米碳管修飾性葡萄糖生物感測器之研究,國立雲林科技大學化學工程系所.[80]. 張自華,2007,可棄式碳鐵奈米微粒修飾性葡萄糖生物感測器之研究,國立雲林科技大學化學工程系所,專題報告
[81]. 李建平,2008,基于Fe3O4/Au/GOx的新型磁性敏感膜葡萄糖传感器的研制,桂林工学院材料与化学工程系.
[82]. Zou Yongjin., Xiang C., Sun L.X., Xu F., 2008, “Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel” Biosensors and Bioelectronics, vol. 23. pp. 1010–1016.