(3.227.235.183) 您好!臺灣時間:2021/04/13 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳易陵
研究生(外文):Yi-Ling Wu
論文名稱:帶電性奈米孔氧化鋁薄膜的製備及其在氨基酸傳輸上的應用
論文名稱(外文):Preparation of charged nanoporous alumina membranes and their use in the transport of amino acids
指導教授:賴世明賴世明引用關係
指導教授(外文):Shin-Ming Lai
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:123
中文關鍵詞:氨基酸傳輸離子選擇性靜電作用力自聚性單分子層帶電性奈米孔氧化鋁薄膜
外文關鍵詞:transport of amino acidselectrostatic interactionsself-assembled monolayerscharged nanoporous aluminum oxide membranes (AAOion-selective
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以多孔性氧化鋁薄膜為基材,在其表面修飾3-aminopropyltrimethoxysilane(簡稱APS)或3-glycidoxypropyl-trimeyhoxysilane (簡稱GOPS),並利用glutamic acid 的接枝,建構一具有pH轉換性(pH-switchable)之離子選擇性膜,並將其應用於L-tyrosine之擴散。
本研究利用接觸角(CA)、紅外線光譜(ATR)、電子顯微鏡(SEM)來鑑定修飾前後之氧化鋁薄膜的結構及表面特性。首先,在矽烷分子的覆膜方面,以接觸角測試成膜後表面親疏水性變化及覆膜之最適時間。結果顯示,氨基矽烷分子最適披覆時間為3小時,接觸角度約為54°;而環氧基矽烷分子最適披覆時間為2小時,接觸角度約為63°左右。而在反射式紅外光譜分析中,矽烷基分子皆有特性波峰出現,顯示覆膜的成功。接著,在矽烷分子的定量方面,本研究利用PABA分子與矽烷分子反應而得。結果顯示,氨基矽烷分子的接枝量為0.002379 mmole/g;環氧基矽烷分子之接枝量為0.002886 mmole/g。另外,在Glutamic acid的接枝方面,由接觸角度的下降可得知接枝反應的發生。
此外,本研究以電滲透流來檢測薄膜電性。實驗結果顯示,未修飾薄膜與接枝上APS、APS-Glu分子後,薄膜呈現正電性;薄膜經過H2O2前處理後與GOPS-Glu接枝後,薄膜成負電性。在標準化流率的pH效應上,以APS 的效應最強,GOPS-Glu的效應次之。因此,利用矽烷分子來修飾多孔性氧化鋁以及接枝上Glu後,確可增加薄膜的表面電性。
在L-tyrosine分子的擴散實驗中,在離子強度為1.5 mM的工作流體下,未修飾薄膜及前處理後薄膜並未顯著pH值效應。然而,修飾後之薄膜會與L-tyrosine分子產生拒斥力,因而具較顯著pH值效應。經由APS分子修飾後之薄膜在較低pH值有較低流通量,而經由GOPS-Glu覆膜後,在較高pH值會有較低流通量。因此,利用矽烷分子來修飾多孔性氧化鋁以及接枝上Glu後,可得到一具離子選擇性之帶電性薄膜。
The pH-switchable ion selective membranes were fabricated by coating a self-assembled monolayer (SAM) of 3-aminopropyltrimethoxysilane (APS) or 3-glycidoxypropyl-trimeyhoxysilane (GOPS) on nanoporous anodic aluminum oxide membrane (AAOM), followed by grafting a SAM of glutamic acids (Glu). They were then used to perform the diffusion experiments of single amino acid- L-tyrosine.
First, the measurements of contact angle (CA)、attenuated total reflection infrared (ATR)、scanning electron microscopy (SEM) were used to characterize the nanoporous AAOM surface before and after surface modification. Using the CA measurements, the optimal formation times and the CA values were 3 hrs and 54° for an APS-SAM and 2 hrs and 63° for a GOPS-SAM, respectively. In the ATR measurement, the characteristics peaks of asymmetric (va) and symmetric (vs) C-H stretching bands were exhibited at 2936、2840 cm-1 for the APS-SAM, and 2937、2870 cm-1 for the GOPS-SAM, respectively, which revealed that the silane-SAMs were well functionalized. In the SEM measurement, it confirmed that the pores were not clogged after the surface modification. Then, the amounts of available amine and epoxy groups present on the membrane surface were quantified from the reaction with the amine group of PABA. The results show that the amount of amine group was 0.002379 mmole/g for the APS-SAM and the amount of epoxy group was 0.002886 mmole/g for the GOPS-SAM. Also, the further grafting of the Glu-SAM was confirmed by the CA measurement.
The membrane surface charge was characterized by the electroosmotic (EO) flow measurement. The results show that the bare AAO, APS coating, and APS-Glu coating membranes presented positive surface charge, while the H2O2 pretreatment and GOPS-Glu coating membranes had negative surface charge. The pH-switchable characteristic of the modified membrane was demonstrated by the effect of solution pH on the EO flow rate. Among the above modified membranes, the APS coating membrane had the most significant pH effect, and the GOPS-Glu membrane followed. It confirmed that silane coating on AAOM followed by glutamic acid attachment was a useful way to increase the surface charge of membrane.
In the diffusion experiment of L-tyrosine, the unmodified AAO and H2O2 pretreatment membranes had no pH effect on the flux. However, there had a significant pH effect on the flux for the modified membranes, due to the repulsive force formed between L-tyrosine and the membrane with the same charge. The results show that the APS coating membrane had low flux at low pH, but the GOPS-Glu coating membrane had low flux at high pH. Again, it proved that silane coating on AAOM followed by glutamic acid attachment was a useful way to fabricate pH-switchable ion selective membranes.
中文摘要 --------------------------------------------------------------------------- i
目錄 --------------------------------------------------------------------------- iii
圖目錄 --------------------------------------------------------------------------- v
表目錄 --------------------------------------------------------------------------- vii
一、 緒論--------------------------------------------------------------------- 1
1.1 前言--------------------------------------------------------------------- 1
1.2 研究動機--------------------------------------------------------------- 1
1.3 研究目的與方法------------------------------------------------------ 4
二、 文獻回顧及理論部份------------------------------------------------ 6
2.1 離子選擇性薄膜介紹------------------------------------------------ 6
2.1.1 傳統式帶電性薄膜於氨基酸傳輸的應用------------------------ 6
2.1.2 帶電性奈米孔氧化鋁薄膜的製備與應用------------------------ 7
2.1.3 奈米孔膜之輸送理論------------------------------------------------ 11
2.2 自聚性膜的製備與應用--------------------------------------------- 15
2.2.1 自聚性膜簡介--------------------------------------------------------- 15
2.2.2 矽烷類自聚性分子膜之製備--------------------------------------- 17
2.2.3 氨基矽烷覆膜及表面羧基化--------------------------------------- 19
2.2.4 環氧基矽烷覆膜及表面羧基化------------------------------------ 23
三、 實驗部分--------------------------------------------------------------- 25
3.1 實驗材料--------------------------------------------------------------- 25
3.1.1 實驗材料與藥品------------------------------------------------------ 25
3.2 分析儀器--------------------------------------------------------------- 27
3.2.1 掃描式電子顯微鏡(SEM)------------------------------------------- 27
3.2.2 接觸角裝置(CA )----------------------------------------------------- 27
3.2.3 全反射式紅外線光譜儀(ATR)------------------------------------- 29
3.2.4 UV/Vis spectrometer-------------------------------------------------- 30
3.3 表面修飾程序--------------------------------------------------------- 32
3.3.1 氨基矽烷覆膜及表面羧基化步驟--------------------------------- 32
3.3.2 環氧基矽烷覆膜及表面羧基化實驗步驟------------------------ 35
3.4 覆膜鑑定分析--------------------------------------------------------- 35
3.4.1 孔徑與孔隙密度之量測--------------------------------------------- 35
3.4.2 離子交換容量(IEC) ------------------------------------------------- 39
3.4.3 矽烷分子定量分析--------------------------------------------------- 39
3.4.4 膜電性量測------------------------------------------------------------ 41
3.5 單成份氨基酸擴散實驗--------------------------------------------- 45
四、 結果與討論------------------------------------------------------------ 49
4.1 AAO膜特性分析----------------------------------------------------- 49
4.1.1 H2O2處理前後 AAO結構分析----------------------------------- 49
4.1.2 表面型態分析--------------------------------------------------------- 49
4.1.3 流體透過分析--------------------------------------------------------- 49
4.1.4 離子交換容積(IEC)-------------------------------------------------- 52
4.2 氨基矽烷覆膜及表面羧基化--------------------------------------- 55
4.2.1 氨基矽烷修飾AAO膜---------------------------------------------- 55
4.2.1.1 水接觸角鑑定分析--------------------------------------------------- 55
4.2.1.2 氨基矽烷分子ATR結構鑑定-------------------------------------- 58
4.2.1.3 表面型態--------------------------------------------------------------- 62
4.2.1.4 流體透過分析--APS孔徑測量------------------------------------- 62
4.2.2 表面羧基化------------------------------------------------------------ 62
4.2.2.1 PABA定量------------------------------------------------------------- 65
4.2.2.2 水接觸角鑑定分析--------------------------------------------------- 65
4.2.2.3 流體透過分析--------------------------------------------------------- 68
4.3 環氧基矽烷覆膜及表面羧基化------------------------------------ 68
4.3.1 環氧基矽烷修飾AAO----------------------------------------------- 68
4.3.1.1 環氧基矽烷分子ATR結構鑑定------------------------------------ 68
4.3.1.2 接觸角分析------------------------------------------------------------ 77
4.3.2 表面羧基化------------------------------------------------------------ 77
4.3.2.1 PABA定量------------------------------------------------------------- 77
4.3.2.2 接觸角分析------------------------------------------------------------ 77
4.4 膜電性量測------------------------------------------------------------ 80
4.4.1 EO pump 計算例----------------------------------------------------- 80
4.4.2 各類型薄膜pH效應及電滲流率的比較------------------------- 80
4.5 Tyrosine 擴散實驗--------------------------------------------------- 95
4.5.1 擴散通量計算實例--------------------------------------------------- 95
4.5.2 擴散實驗再現性測試------------------------------------------------ 95
4.5.3 擴散端效應------------------------------------------------------------ 100
4.5.4 各類型薄膜之pH擴散效應---------------------------------------- 100
五、 結論--------------------------------------------------------------------- 104
六、 參考文獻--------------------------------------------------------------- 106
Balachandra, A. M., J. Dai, and M. L. Bruening, “Enhancing the Anion-Transport Selectivity of Multilayer Polyelectrolyte Membranes by Templating with Cu2+,” Macromolecules, 35, 3171-3178 (2002).

Bhattacharyya, D., J. A. Hestekin, P. Brushaber, L. Cullen, L. G. Bachas, and S. K. Sikdar, “Novel Poly-Glutamic Acid Functionalized Microfiltration Membranes for Sorption of Heavy Metals at High Capacity,” J. Membrane Sci., 141, 121-135 (1998).

Bluhm, E. A., E. Bauer, R. M. Chamberlin, K. D. Abney, J. S. Young, and G. D. Jarvinen, “Surface Effects on Cation Transport across Porous Alumina Membranes,” Langmuir, 15, 8668-8672 (1999).

Bluhm, E. A., E. Bauer, R. M. Chamberlin, K. D. Abney, J. S. Young, and G. D. Jarvinen, “Surface Effects on Cation Transport across Porous Alumina Membranes. 2. Trivalent Cations: Am, Tb, Eu, and Fe,” Langmuir, 16, 7056-7060 (2000).

Buck, M., “Ab initio calculations of vibrational spectra of 2-methoxy ethanol in the C-H,” J. Membrane Sci., 172, 39-48 (2003).

Chang C.S., H. S. Ni, S. Y. Suen, W. C. Tseng, H. C. Chiu and C. P. Chouc, “Preparation of inorganic–organic anion-exchange membranes and their application in plasmid DNA and RNA separation,” J. Membrane Sci., 311, 336-348 (2008).

Chen, W., J. H. Yuan and X. H. Xia, “Characterization and Manipulation of the Electroosmotic Flow in Porous Anodic Alumina Membranes,” Anal. Chem., 77, 8102-8108 (2005).

Chen, H., Y. Feng, D. Lin, X. Yadong, J. Huangxian, “A self-assembled monolayer based electrochemical immunosensor for detection of leukemia K562A cells,” electrochemistry communications, 9, 1359-1364 (2007).

Chiu, H. C., C. W. Lin and S. Y. Suen, “Isolation of Lysozyme from Hen Egg Albumen Using Glass Fiber-based Cation-exchange Membranes,” J. Membrane Sci., 290, 259–266 (2007).

Dubois, L. H., B. R. Zegarski and R. G. Nuzzo, “Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers,” Journal of the American Society, 122, 570-579 (1990).

Dubois, L. H. and R. G. Nuzzo., “Synthesis, structure, properties of model organic surfaces,” Annual review of physical chemistry, 43, 437-463 (1992).

Elender G., M. Kfihner and E. Sackmann, “Functionalisation of Si/Si02 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers,” Biosensors & Bioelectronics, 11, 565-577 (1996).

Garem, A., G. Daufin, J. L. Maubois, and J. Leonil, “Selective Separation of Amino Acids with a Charged Inorganic Nanofiltration Membrane: Effect of Physicochemical Parameters on Selectivity,” Biotech. Bioeng., 54 (4), 291-302 (1997).

Gelest, Inc., “Silane Coupling Agents, ”(2006)

Hammes, G. G., “Thermodynamics and Kinetics for the Biological Sciences,” Wiley, New York (2000).

Harris, J. J., J. L. Stair and M. L. Bruening, “Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport,” Chem. Mater., 12, 1941-1946 (2000).

Hernandez, A., J. I. Calvo, P. Pradanos, L. Palacio, M. L. Rodrfguez and J. A. de Saja “Surface structure of microporous membranes by computerized SEM image analysis applied to Anopore filters,” J. Membrane Sci., 137, 89-97 (1997).

Hestekin, J. A., L. G. Bachas, and D. Bhattacharyya, “Poly(amino acid)-Functionalized Cellulosic Membranes: Metal Sorption Mechanism and Results,” Ind. Eng. Chem. Res., 40, 2668-2678 (2001).

Hollman, A. M. and D. Bhattacharyya, “Controlled Permeability and Ion Exclusion in Microporous Membranes Functionalized with Poly(L-glutamic acid),”Langmuir, 18, 5946-5952 (2002).

Hollman, A. M., N. T. Scherrer, A. Cammers-Goodwin, and D. Bhattacharyya, “Separation of Dilute lectrolytes in Poly(amino acid) Functionalized Microporous Membranes: Model Evaluation and Experimental Results,” J. Membrane Sci., 239, 65-795 (2004).

Hong, S. U., M. D. Miller, and M. L. Bruening, “Removal of Dyes, Sugars, and Amino Acids from NaCl Solutions Using Multilayer Polyelectrolyte Nanofiltration Membranes,”Ind. Eng. Chem. Res., 45, 6284-6288 (2006).

Hong, S. U., R. Malaisamy, and M. L. Bruening, “Separation of Fluoride from Other Monovalent Anions Using Multilayer Polyelectrolyte Nanofiltration Membranes,” Langmuir, 23, 1716-1722 (2007).

Hou, Z., N. L. Abbott, and P. Stroeve, “Electroless Gold as a Substrate for Self-Assembled Monolayers,” Langmuir, 14, 3287-3297 (1998).

Hou, Z., “Self-Assembled Monolayers of Alkanethiols on Electroless Gold for Modification of Surface Properties of Porous Separation Media,” Ph.D. Dissertation, University of California, Davis (1999).

Igor, L., D. Julthongpiput, A. Liebmann-Vinson, T. Cregger, M. D. Foster and V. V. Tsukruk, “Epoxy-Terminated Self-Assembled Monolayers: Molecular Glues for Polymer Layers” Langmuir, 16, 504-516 (2000).

Jimbo, T., P. Ramirez, A. Tanioka, S. Mafe, and N. Minoura, “Passive Transport of Ionic Drugs through Membranes with pH-Dependent Fixed Charges,” J. Colloid Interface Sci., 225, 447-454 (2000).

Khatri, O. P. and S. K. Biswas, “Thermal Stability of Octadecyltrichlorosilane Self-Assembled on a Polycrystalline Aluminum Surface,” Surface Science, 572, 228–238 (2004).

Krasnoslobodtsev, A. V. and S. N. Smirnov, “Effect of Water on Silanization of Silica by Trimethoxysilanes,” Langmuir, 18, 3181-3184 (2002).

Ku, J.-R., “Surface Modification for Thin Film Deposition, Nanocable Fabrication Molecular Gates in Nanoporous Templates,” Ph.D. Dissertation, University of California, Davis (2005).

Kurth, D. G. and T. Bein, “Quantification of the reactivity of 3-aminopropyl-
triethoxysilane monolayers with the quartz-crystal microbalance,” Angew. Chem. Int. Ed. Engl., 31, No. 3, 336-338 (1992).

Kurth, D. G. and T. Bein, “Surface reactions on thin layers of silane coupling agents,” Langmuir, 9, 2965-2973 (1993).

Leddy, J. J., In Synthetic Membranes; Chenoweth, M. B., Ed.; MMI Press Symposium Series 5, Harwood Academic Publishers, London, 119-128 (1986).

Li, S.-L., C. Li, Y.-S. Liu, X.-L. Wang, and Z.-A. Cao, “Separation of L-glutamine from Fermentation Broth by Nanofiltration,” J. Membrane Sci., 222, 191-201 (2003).

Liu, X. and M. L. Bruening, “Size-Selective Transport of Uncharged Solutes through Multilayer Polyelectrolyte Membranes,” Chem. Mater., 16, 351-357 (2004).

Lugscheider, E., K. Bobzin and M. Moller, “The effect of PVD layer constitution on surface free energy,” Thin Solid Films, 355-356, 367-373 (1999).

Minagawa, M., A. Tanioka, P. Ramírez, and S. Mafé, “Amino Acid Transport through Cation Exchange Membranes: Effects of pH on Interfacial Transport,” J. Colloid Interface Sci., 188, 176-182 (1997).

Minagawa, M. and A. Tanioka, “Leucine Transport through Cation Exchange Membranes: Effects of HCl Concentration on Interfacial Transport,” J. Colloid Interface Sci., 202, 149-154 (1998).

Mulder, M., “Basic Principle of Membrane Technology,” 2nd Edition, Kluwer Academic Publishers, Boston (1996).

Nishizawa, M., V. P. Menon, and C. R. Martin, “Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity,” Science, 268, 700-702 (1995).

Ohshima, T., “NEA photocathode for SEM application,” microelectronic engineering, 67-68, 951-954 (2003).

Ramírez, P., A. Alcaraz, and S. Mafé, Uphill transport of amino acids thourgh fixed charge membranes; In Encyclopedia of Surface and Colloid Science; A. Hubbard, Ed.; Marcel Dekker: New York, 1-12 (2003).

Ritchie, S. M. C., L. G. Bachas, T. Olin, S. K. Sikdar, and D. Bhattacharyya, “Surface Modification of Silica- and Cellulose-Based Microfiltration Membranes with Functional Polyamino Acids for Heavy Metal Sorption,” Langmuir, 15, 6346-6357 (1999).

Ritchie, S. M. C., K. E. Kissick, L. G. Bachas, S. K. Sikdar, C. Parikh, and D. Bhattacharyya, “Polycysteine and Other Polyamino Acid Functionalized Microfiltration Membranes for Heavy Metal Capture,” Environ. Sci. Technol., 35, 3252-3258 (2001).

Rye, R. R., G. C. Nelson and M. T. Dugger, “Mechanistic aspects of alkylchlorosilane coupling reactions,” Langmuir, 13, 2965-2972 (1997).

Sato, K. and H. Miyake, “High Performance Ion Exchange Membrane for Industrial Use,” Polym. J., 23, 531-540 (1991).

Sato, K., “Effects of the Feed Solution Concentration on the Separation Degree in Donnan Dialysis for Binary Systems of Amino Acids,” J. Membrane Sci., 196, 211-220 (2002).

Sikdar, S. K., “Permeation Characteristics of Amino Acids through a Perfluorosulfonated Polymeric Membrane,” Ind. Eng. Chem. Res., 26, 170-174 (1987).

Skoog, D. A., F. J. Holler and T. A. Nieman, “Principles of instrumental analysis,” cole Thomson learning (1998)

Smuleac, V., D. A. Butterfield, S. K. Sikdar, R. S. Varma, and D. Bhattacharyya, “Polythiol-Functionalized Alumina Membranes for Mercury Capture,” J. Membrane Sci., 251, 169-178 (2005).

Socrates, G., “Infrared characteristic group frequencies,” John Wiley & Sons (1980).

Stanton, B. W., J. J. Harris, M. D. Miller, and M. L. Bruening, “Ultrathin, Multilayered Polyelectrolyte Films as Nanofiltration Membranes,” Langmuir, 19, 7038-7042 (2003).

Szczepanski, V., I. Vlassiouk and S. Smironov, “Stability of Silane Modifiers on Alumina Nanoporous Membranes,” J. Membrane Sci., 281, 587-591 (2006).

Timmer, J. M. K., M. P. J. Speelmans, and H. C. van der Horst, “Separation of Amino Acids by Nanofiltration and Ultrafiltration Membranes,” Sep. and Purifi. Tech., 14, 133-144 (1998).

Tsukruk V. V., I. Luzinov and D. Julthongpiput,” Sticky Molecular Surfaces: Epoxysilane Self-Assembled Monolayers,” Langmuir, 15, 3029-3032 (1999).

Ulman, A., “An Introduction to Ultrathin Organic Film,” Academic Press, San Diego (1991).

Vallant, T., H. Brunner, U. Mayer, H. Hoffmann, T. Leitner, R. Resh and G. Friedbacher, “Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy,” J. Phys. Chem. B, 102, 7190-7197 (1998).

Vlassiouk, I., A. Krasnoslobodtsev, S. Smirnov and M. Germann, “Direct Detection and Separation of DNA Using Nanoporous Alumina Filters,” Langumir, 20, 9913-9915 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔