(3.230.173.249) 您好!臺灣時間:2021/04/18 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林相亮
研究生(外文):Hsiang-liang Lin
論文名稱:聚乙烯醇/(2-丙烯酰胺-2-甲基丙磺酸/順丁烯二酸酐共聚物)質子傳導膜之製備與特性研究
論文名稱(外文):Synthesis and characterizations of the proton conducting membranes based on poly(vinyl alcohol)/poly(AMPS-co-MA)
指導教授:林智汶
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:141
中文關鍵詞:質子傳導膜2-丙烯酰胺-2-甲基丙磺酸燃料電池聚乙烯醇
外文關鍵詞:Poly(vinyl alcohol)proton exchange membraneFuel Cell2-acrylamido-2-methyl-1-propanesulfonic acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究針對適用於直接甲醇燃料電池之質子交換膜進行研究開發,選用成膜性佳,且對於醇類與水具有良好的選擇性優點的聚乙烯醇(Poly vinyl alcohol,簡稱PVA)作為基材,再以磺酸化丁二酸(Sulfosuccinic acid,簡稱SSA)作為交聯劑,經由酯化交聯反應形成網狀結構(簡稱PVA/SSA);進一步將2-丙烯酰胺-2-甲基丙磺酸/順丁烯二酸酐共聚物 (poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-maleic acid) ,簡稱PAM)導入PVA/SSA中,賦予膜材具質子傳導之功能。將三者材料結合為質子交換膜(簡稱PVA-PAM)。本研究藉由改變PAM中AMPS/MA單體的莫耳比,調整薄膜之親水性及結構之特性,以探討電解質薄膜的基本性質(機械性質、含水率、質子傳導率、甲醇滲透率等)與薄膜對甲醇水溶液的吸收與膜內分子傳導特性之變化情形。
結果顯示,當膜內MA的比例增加時,儲存模數與抗拉強度皆上升,顯示MA促進交聯度提升,改善膜材結構之力學特性,其中以AMPS/MA為1:3(A1M3)的表現最佳,其儲存模數與抗拉強度分別為Nafion之14.5與1.73倍。隨著AMPS/MA比例的增加,質子傳導率與甲醇滲透率皆隨之上升,其中質子傳導率以A2M1的表現最佳,可達2.3×10-2 S/cm,與Nafion相近,而甲醇滲透率僅有Nafion 115之二分之ㄧ;推測因PVA-PAM膜親水性增加,膜內自由水比例隨之上升,降低了質子在複合膜中傳遞所需的能量,質子傳導機制偏向Vehicle mechanism。
本研究又以不同濃度的甲醇水溶液探討薄膜對溶劑吸收(Solvent Uptake)與溶劑分子在膜內之傳輸特性,發現PVA-PAM薄膜之甲醇水溶液吸收隨著甲醇的濃度提高而下降。經SS-NMR的分析發現, A2M1膜內的甲醇濃度較溶液中的濃度為低,且隨著甲醇濃度提高,膜內每單位磺酸根所吸收的水分子的值(λH2O)減少,造成膜材的每單位磺酸根所吸收的總溶液分子數(λtotal)降低,以及溶劑吸收度下降。經DSC分析結果得知,隨甲醇濃度提高, A2M1膜內自由水的比例下降,此結果可能導致甲醇在膜內的擴散能力下降,當甲醇濃度為75 wt. %時,A2M1之甲醇滲透率(4.58×10-7cm2/s)低於Nafion 115約一個次方。由此可知複合膜對甲醇確實有較Nafion好的阻抗能力,特別是在高濃度的甲醇環境中。
This study investigated the potential of the hydrocarbon membranes consisting of poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-maleic acid) P(AMPS-co-MA) for direct methanol fuel cells (DMFC) applications. The effect of AMPS/MA molar ratios on membrane properties was characterized by water uptake, proton conductivity, and methanol permeability. These properties increased with AMPS/MA molar ratio increased from 1/3 to 2/1. Specifically, when AMPS/MA molar ratio increased to 2/1, named A2M1 membrane, the proton conductivity of this membrane is comparable to Nafion 115 and the methanol permeability is only half that of Nafion 115. In addition, the A2M1 membrane shows a much higher storage modulus than that of Nafion 115. Moreover, the sorption and transport properties in terms of water/methanol uptake and methanol permeability in PVA-PAM membrane and Nafion 115 at different methanol concentration were also investigated. For example, with the increase of methanol concentration form 0 to 75%, the water/methanol uptake of A2M1 membrane decreased form 73.1 to 48.2 wt. % and the methanol permeability decreased to 4.58×10-7(cm2/s). However, Nafion 115 membrane shows a different sorption and transport behavior. With the increase of methanol concentration, the water/methanol uptake in Nafion 115 increased form 32.3 to 89.0 wt. % and the methanol permeability increased form 1.6×10-6 to 5.43×10-6 (cm2/s). Among mentioned results, the PVA-PAM membranes were regarded to DMFC application, especially for high methanol feeding condition.
中文摘要 -----------------------------------------------------------------------------------------i
英文摘要 ---------------------------------------------------------------------------------------iii
誌謝 ---------------------------------------------------------------------------------------------v
總目錄 ------------------------------------------------------------------------------------------vi
表目錄 ----------------------------------------------------------------------------------------viii
圖目錄 ------------------------------------------------------------------------------------------ix
一、緒 論----------------------------------------------------------------------------------------1
1.1 前言 -----------------------------------------------------------------------------------------1
1.2燃料電池的發展歷史與目前趨勢-------------------------------------------------------4
1.3燃料電池的種類 --------------------------------------------------------------------------6
1.4質子交換膜燃料電池----------------------------------------------------------------------8
1.4.1氫氧型燃料電池--------------------------------------------------------------------------8
1.4.2 直接甲醇燃料電池---------------------------------------------------------------------10
二、文獻回顧------------------------------------------------------------------------------------11
2.1 質子交換膜的種類-----------------------------------------------------------------------11
2.2 替代型薄膜--------------------------------------------------------------------------------14
2.2.1 氟素系質子交換膜---------------------------------------------------------------------14
2.2.2 芳香族系碳氫質子交換膜------------------------------------------------------------18
2.2.3 脂肪族系碳氫系高分子膜------------------------------------------------------------23
2.2.4 滲入型薄膜------------------------------------------------------------------------------26
2.3 質子交換膜內的傳輸現象--------------------------------------------------------------28
2.3.1 質子交換膜內質子、水、甲醇傳導機制------------------------------------------28
2.3.2 高分子特性對質子交換膜傳導性質的影響---------------------------------------30
2.4 Nafion®在不同甲醇濃度下的吸收與傳導行為--------------------------------32
2.4.1 Nafion®膜在不同含水率下的型態變化---------------------------------------32
2.4.2 Nafion®對不同甲醇濃度下之水溶液的吸收行為---------------------------34
2.4.3 Nafion®在不同甲醇濃度下的水狀態分布------------------------------------35
2.4.4 Nafion®在不同甲醇濃度下的甲醇傳導之行為------------------------------37
2.5其他類質子交換膜在不同甲醇濃度下的吸收行為---------------------------------38
2.6 研究動機-----------------------------------------------------------------------------------41
三、原理------------------------------------------------------------------------------------------46
3.1傅立葉紅外線吸收光譜儀---------------------------------------------------------------46
3.2薄膜內的水狀態分析---------------------------------------------------------------------46
3.3甲醇滲透率---------------------------------------------------------------------------------47
3.4交流阻抗分析------------------------------------------------------------------------------50
3.5動態機械分析------------------------------------------------------------------------------58
3.6萬能拉力試驗機---------------------------------------------------------------------------58
3.7原子力顯微鏡------------------------------------------------------------------------------58
四、實驗方法-----------------------------------------------------------------------------------59
4.1實驗藥品------------------------------------------------------------------------------------59
4.2實驗儀器------------------------------------------------------------------------------------60
4.3薄膜製備------------------------------------------------------------------------------------61
4.4薄膜之分析與鑑定------------------------------------------------------------------------65
4.4.1全反射式傅立葉轉換紅外線光譜分析----------------------------------------------65
4.4.2溶劑吸收率之實驗流程----------------------------------------------------------------65
4.4.3微差掃描熱卡計-------------------------------------------------------------------------65
4.4.4質子傳導率實驗流程-------------------------------------------------------------------66
4.4.5甲醇滲透率實驗-------------------------------------------------------------------------67
4.4.6動態機械分析----------------------------------------------------------------------------68
4.4.7拉伸試驗----------------------------------------------------------------------------------68
4.4.8原子力顯微鏡之操作程序-------------------------------------------------------------69
4.4.9膜材於不同甲醇濃度下,膜內水與甲醇的分配比例-----------------------------69
五、結果與討論--------------------------------------------------------------------------------70
5.1 FTIR/ATR之光譜分析--------------------------------------------------------------------70
5.2膜材之表面型態---------------------------------------------------------------------------76
5.3薄膜機械性質實驗------------------------------------------------------------------------79
5.4薄膜之飽和含水率------------------------------------------------------------------------84
5.5薄膜內的水狀態分析---------------------------------------------------------------------86
5.6複合膜之質子傳導率---------------------------------------------------------------------90
5.7質子傳導活化能---------------------------------------------------------------------------94
5.8複合膜之甲醇滲透率---------------------------------------------------------------------97
5.9甲醇滲透活化能--------------------------------------------------------------------------100
5.10膜材之選擇率---------------------------------------------------------------------------103
5.11薄膜於不同甲醇濃度下的吸收與傳導特性---------------------------------------105
5.11.1薄膜於不同濃度的甲醇水溶液中之吸收率-------------------------------------105
5.11.2不同甲醇濃度下質子交換膜膜內水/甲醇比例---------------------------------108
5.11.3不同甲醇濃度下薄膜內自由水的分布情形-------------------------------------114
5.11.4不同甲醇濃度下薄膜的甲醇滲透率----------------------------------------------117
六、結論----------------------------------------------------------------------------------------120
七、參考文獻----------------------------------------------------------------------------------122
1. 衣寶廉, “燃料電池原理與應用”, 五南圖書出版 (2005).
2. S. S. Penner, “Energy”, Oxford, 11, 1-229, (1986).
3. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, New York, (1989).
4. 本間琢也, 王建義, “圖解燃料電池百科”, 全華科技出版 (2004).
5. K. Kordesch, G. Simader, “Fuel cells and their applications’’, 10, (1996).
6. G. Apanel, “Direct methanol fuel cells – ready to go commercial ? ”, Fuel Cells Bulletin, 12-17, (2004).
7. Bolmen , M.J. Leo J., and M. N. Megerwa , “Fuel Cell Systems”,plenum press, New York London, (1993).
8. G.J.K. Acres, J.G. Forst, G. A. Hards, R.J. Potter, T.R. Ralph, D. Thompsett, G.T. Burstein, and G .J. Hutchings , “catalysis today”, 38, 393 (1997).
9. Nicholas W. Deluca, Yossef A. Elabd, “Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review”, Journal of Polymer Science: Part B: Polymer Physics, 44, 2201-2225, (2006).
10.Laurent Depre , “Inorganic-organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods”, Electrochimica Acta, 43, 1301-1306, (1998).
11. M. Wakizoe, O. A. Velev, S. Srinivasan, “Analysis of proton exchange membrane fuel cell performance with alternate membranes”, Electrochimica Acta, 40, 335-344, (1995).
12. M.A. Smit, A. L. Ocampo, M. A. Espinosa-Medina, P. J. Sebastian, “A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell”, Journal of Power Sources, 124, 59-64, (2003).
13. Jr. Charles W. Walker, “Proton-Conducting Interpenetrating Polymer Network with Reduced Methanol Permeability”, Journal of the Electrochemical Society, 151, 1797-1803, (2004).
14. B. Bae, H. Y. Ha, D. Kim, “Preparation and Characterization
of Nafion/Poly(1-vinylimidazole) Composite Membrane for DirectMethanol Fuel Cell Application”, Journal of the ElectrochemicalSociety, 152, 1366-1372, (2005).
15. J. Liu, H. Wang, S. Cheng, K. Y. Chan, “Nafion–polyfurfurylalcohol nanocomposite membranes for direct methanol fuel cells”, Journal of Membrane Science, 246, 95-101, (2005).
16. J. P. Tsao, C. W. Lin, “Preparations and Characterizations of the Nafion/SiO2 Proton Exchange Composite Membrane”, Journal of Materials Science and Engineering, 34, 17-26, (2002).
17. Z. G. Shao, X. Wang, “Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell”, Journal of Membrane Science, 210, 147-153, (2002).
18. F. Kadirgan, O. R. Savadogo, “Methanol Crossover through Modified Nafion Proton Exchange Membrane”, Journal of Electrochemistry, 40, 1141-1145 (2004).
19. C. W. Lin, K. C. Phan, R. Thangamuthu, “Preparation and characterization of high selectivity organic-inorganic hybrid-laminated Nafion 115 membranes for DMFC”, Journal of Membrane Science, 278, 437-446 (2006).
20. L. J. Hobson, H. Ozu, M. Yamaguchi, S. Hayase, “Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells”, Journal of the ElectrochemicalSociety, 148, A1185-1190, (2001).
21. J.-M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, R. Jerome,“Impact of acid containing montmorillonite on the properties of Nafion® membranes”, Polymer, 46, 11389-11395, (2005).
22. D. S. Scott, W. Hafele, “The coming hydrogen age: Preventing world climatic disruption”, International Journal of Hydrogen Energy,15, 727-737, (1990).
23. X. Li, C. Zhao, H. Lu, Z. Wang, H. Na, “Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application”, Polymer, 46, 5820-5827, (2005).
24. L. Li, J. Zhang, Y. Wang, “Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell” Journal of Membrane Science, 226, 159-167, (2003).
25. M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, Lu, Y., “Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications”, Journal of Membrane Science, 234, 75-81, (2004).
26. E. Drioli, A. Regina, M. Casciola, A. Oliveti, F. Trotta, T. Massari, “Sulfonated PEEK-WC membranes for possible fuel cellapplications”, Journal of Membrane Science, 228, 139-148, (2004).
27. N. Carretta, V. Tricoli, F. Picchioni, “Ionomeric membranes basedon partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation”, Journal of Membrane Science, 166,189-197, (2000).
28. I. W. Hamley, “The Physics of Block Copolymers”; OxfordUniversity Press: New York, (1998).
29. R. A. Weiss, A. Sen, L. A. Pottick, C. L. Willis, “Block copolymerionomers: 2. Viscoelastic and mechanical properties of sulphonatedpoly(styrene-ethylene/butylene-styrene)”, Polymer, 32, 2785-2792,(1991).
30. R. A.Weiss, A. Sen, C. L. Willis, L. A. Pottick, “Block copolymerionomers: 1. Synthesis and physical properties of sulphonatedpoly(styrene-ethylene/butylene-styrene)”, Polymer, 32, (1991)1867-1874.
31. L. N. Venkateshwaran, G. A. York, C. D. DePorter, J. E. McGrath,G. L. Wilkes, “Morphological characterization of well defined methacrylic based di- and triblock ionomers”, Polymer, 33, 2277-2286, (1992).
32. A. Mokrini, C. Del Rio, J. L. Acosta, “Synthesis and characterization of new ion conductors based on butadiene styrene copolymers”, Solid State Ionics, 166, 375-381, (2004).
33. C. K. Shin, G. Maier, B. Andreaus, G. G. Scherer, “Block copolymer ionomers for ion conductive membranes”, Journal ofMembrane Science, 245, 147-161, (2004).
34. Y. A. Elabd, E. Napadensky, C.W. Walker, K. I. Winey, “TransportProperties of Sulfonated Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers at High Ion-Exchange Capacities”, Macromolecules, 39, 399-407, (2006).
35. X. Zhang, S. Liu, L. Liu, J. Yin, “Partially sulfonated poly(aryleneether sulfone)-b-polybutadiene for proton exchange membrane”, Polymer, 46, 1719-1723, (2005).
36. J. Kim, B. Kim, B. Jung, Y. S. Kang, H. Y. Ha, I.-H. Oh, K. J. Ihn, “Effect of Casting Solvent on Morphology and Physical Properties of Partially Sulfonated Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene Copolymers”, Macromolecular Rapid Communications, 23, 753-756,(2002).
37. B. Kim, J. Kim, B. Jung, “Morphology and transport properties of protons and methanol through partially sulfonated block copolymers”,Journal of Membrane Science 250, 175-182, (2005).
38. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I-H. Oh, H. S. Kim, K. T. Kim, W. H. Jo, “Structural characterization and surface modification of sulfonated polystyrene –(ethylene–butylene)– styrene triblock proton exchange membranes”, Journal of Membrane Science, 214, 245–257 (2003).
39. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, K.J.Ihn,“Fixation of Nanosized Proton Transport Channels in Membranes”, Macromolecules, 36 , 3228-3234, (2003).
40. W. Xu, C. Liu, X. Xue, Yi Su, Y. Lv, W. Xing, T. Lu, “New protonexchange membranes based on poly(vinyl alcohol) for DMFCs”, Solid State Ionics, 171, 121–127, (2004).
41. D. S. Kim, H. B. Park, J. W. Rhim, Y. M. Lee, “Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications”, Journal of Membrane Science, 240, 37-48, (2004).
42. M. S. Kang, J. H. Kim, J. Won, S. H. Moon, Y. S. Kang, “Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells”, Journal of Membrane Science, 247, 127-135, (2005).
43. B. Smitha, S. Sridhar, A. A. Khan, “Synthesis and Characterization of Poly(vinyl alcohol)-based membranes for Direct Methanol Fuel Cell”, Journal of Applied Polymer Science, 95, 1154-1163, (2005).
44. J. Qiao, T. Hamaya, and T. Okada, “Chemically Modified Poly(vinyl alcohol)-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a Novel Proton-Conducting Fuel Cell Membrane”, Chemistry of Materials, 17, 2413-2421, (2005).
45. C.W. Lin, Y.F. Huang, A.M. Kannan, “Semi-interpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton exchange fuel cell membranes”, Journal of Power Sources, 164, 449-456, ( 2007).
46. C.W. Lin, Y.F. Huang, A.M. Kannan, “Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells”, Journal of Power Sources, 171, 340-347, (2007).
47. M.M. Nasef, N.A. Zubir, A.F. Ismail, M. Khayet, K.Z.M. Dahlan, H.Saidi, R. Rohani, T.I.S. Ngah, N.A. Sulaiman, “PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: Preparation and transport characteristics of protons and methanol”,Journal of Membrane Science, 268 96-108, (2006).
48. T. Tezuka, K. Tadanaga, A. Matsuda, A. Hayashi, M. Tatsumisago, “Utilization of glass paper as a support of protonconductive inorganic–organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane”, Electrochemistry Communications, 7, 245-248, (2005).
49. B. S. Pivovar, Y. Wang, E. L. Cussler, “Pervaporation membranes in direct methanol fuel cells”, Journal of Membrane Science, 154, 155-162, (1999).
50. T. A. Zawodzinski, Neeman, M.; Sillerud, L. O. S. Gottesfeld, “Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes”, J. Phys. Chem., 95, 6040-6044, (1991).
51. T. D. Gierke, G. E. Munn, F. C. Wilson, “The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies ”, Journal of Polymer Science Part B: Polymer Physic, 19, 1687-1704, (1981).
52. A. Z. Weber, Newman, “Modeling Transport in Polymer-ElectrolyteFuel Cells”, Chemical Reviews, 104, 4679-4726, (2004).
53. S. Hietala, S. L. Maunu, F. Sundholm, “Sorption and Diffusion of Methanol and Water in PVDF-g-PSSA and Nafion 117 Polymer Electrolyte Membranes”, Journal of Polymer Science: Part B: Polymer Physics, 38, 3277-3284, (2000).
54. H. L. Wu, C. C. M. Ma, C. H. Li, T. M. Lee, C. Y. Chen, C. L. Chiang, C. Wu, “Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane”, Journal of Membrane Science, 280, 501-508, (2006).
55. V. Saarinen , K.D. Kreuer , M. Schuster b, R. Merkle , J. Maier, “On the swelling properties of proton conducting membranes for direct methanol fuel cells”, Solid State Ionics, 178, 533-537, (2007).
56. X. Ren, Thomas E. Springer, A. Thomas, Zawodzinski, Shimshon Gottesfeld, “Methanol Transport Through Nafion Membranes Electro-osmotic Drag Effects on Potential Step Measurements”, Journal of The Electrochemical Society, 147, 466-474, (2000).
57. K. Nakamura, T. Hatakeyama, H. Hatakeyama, “Relationshipbetween hydrogen bonding and bound water in polyhydroxystyrenederivatives”, POLYMER, 24, 871-876, (1983).
58. Y. S. Kim, L. Dong, M. A. Hickner, T. E. Glass, V. Webb, and J. E. McGrath, “State of Water in Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluorosulfonic Acid Copolymer (Nafion) and Its Effect on Physical and Electrochemical Properties”, Macromolecules, 36,6281-6285, (2003).
59. H. R. Corti, F. N.-Pondal, M. P. Buera, “Low temperature thermal properties of Nafion 117 membranes
in water and methanol-water mixtures”, Journal of Power Sources, 161, 799-805, (2006).
60. M. S. Kang, J. H. Kim, J. Won, S. H. Moon, Y. S. Kang, “Highly charged proton exchange membranes prepared by using watersoluble polymer blends for fuel cells”, Journal of Membrane Science 247, 127-135, (2005).
61. H. A. Every, M. A. Hickner, J. E. McGrath, T. A. Zawodzinski Jr., “An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes”, Journal of Membrane Science, 250, 183-188, (2005).
62. W. Y. Chiang, C. L. Chen, “Separation of water-alcohol mixture by using polymer membrane”, Polymer, 39, 2227-2233, (1998).
63. B. S. Pivovar, Y. Wang, E. L. Cussler, “Pervaporation membranes in direct methanol fuel cells”, Journal of Membrane Science, 154, 155-162, (1999).
64. M. Wesslein, A. Heintz, “Pervaporation of liquid mixture throughpoly(vinyl alcohol)(PVA) membrane”, Journal of Membrane Science,51, 169, (1990).
65. H. Ohya, K. Matsumoto, “The sepration of water and ethanol by pervaporation with PVA-PAN composite membrane”, Journal of Membrane Science, 68, 141, (1992).
66. J. Qiao, T. Hamaya, T. Okada, “New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modifiedpoly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA–PAMPS) for low temperature direct methanol fuel cells (DMFCs) ”, Polymer, 46, 10809-10816, (2005).
67. J. Shen, J. Xi, W. Zhu, L. Chen, X. Qiu, “A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells ”, Journal of Power Sources, 159, 894-899, (2006).
68. L. E. Karlsson, B. Wessle´n, P. Jannasch, “Waterabsorption and proton conductivity of sulfonated acrylamidecopolymers”, Electrochimica Acta, 47, 3269-3275, (2002).
69. Jr. Charles W. Walker, “Proton-conducting polymer membranecomprised of a copolymer of 2-acrylamido-2-methylpropanesulfonicacid and 2-hydroxyethyl methacrylate”, Journal of Power Sources,110, 144-151, (2002).
70. Y. Shen, J. Xi, X. Qiu, W. Zhua, “A new proton conductingmembrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells”, Electrochimica Acta, 52, 6956-6961, (2007).
71. D. L. Pavia, G. M. Lampman, G. S. Kriz, “Introduction to Spectroscopy”, Brooks Cole, (2000).
72. 張漢宜,有機/無機混成質子交換膜之製備及其應用於燃料電池之特性分析, 雲林科技大學, 工業化學與災害防治研究所 (2002).
73. P. Mukoma, B. R. Jooste, H. C. M. Vosloo, “A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations”, Journal of Membrane Science, 243, 293-299, (2004).
74. 蔡英文碩士論文,同步輻射X光吸收光譜在鋰電池材料之應用﹐台灣科技大學, 化學工程研究所 (1999).
75. 李育德,顏文義,莊祖煌,聚合物物性,高立圖書,222-231,(2005).
76. 簡仁德、楊子毅、張柳春,材料與科學工程,高立書局, 154~189
77. J. W. Rhima, H. B. Park, “Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes”, Journal of Membrane Science, 238, 143-151, (2004).
78. J. W. Rhim, “Modification of Poly(vinyl alcohol) Membranes Using Sulfur succinic Acid”, Journal of Applied Polymer Science, 68, 1717-1723, (1998).
79. C. Seoul, “Drawing of sprayed poly(vinyl alcohol) films”, Polymer, 38, 5551-5555,(1997).
80. Z. G. Shao, “Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell”, Journal of Membrane Science, 210, 147-153, (2002).
81. C. O. M''Bareck, Q. T. Nguyen, M. Metayer, J. M. Saiter, M. R. Garda, “Poly (acrylic acid) and poly (sodium styrenesulfonate) compatibility by Fourier transform infrared and differential scanning calorimetry”, Polymer, 45, 4181-4187, (2004).
82. J. Payne, “ Nafion® - Perfluorosulfonate Ionomer”, http://www.psrc.usm.edu/mauritz/nafion.html, (2005).
83. S. Swier, V. Ramani, J. M. Fenton, H.R. Kunz, M.T. Shaw, R.A. Weiss, “Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells”, Journal of Membrane Science, 256, 122-133, (2005).
84. B. Smitha, S. Sridhar, A.A. Khan, “Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells”, Macromolecules, 37, 2233-2239, (2004).
85. S. Y. Ahn, Y. C. Lee, H. Y. Ha, S. A. Hong, I. H. Oh, “Properties of the reinforced composite membranes formed by melt soluble ion conducting polymer resins for PEMFCs”, Electrochimica Acta, 50, 571-575, (2004).
86. Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, J. E. McGrath, “Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability”, Journal of Membrane Science, 243, 317-326, (2004).
87. E. Skou, P. Kauranen, J. Hentschel, “Water and methanol uptake in proton conducting Nafion® membranes”, Solid State Ionics, 97,333-337, (1997).
88. S. M. Lee, S. S. Ju, H. Y. Chung, C. S. Ha, W. J. Cho, “Syntheses and antitumor activities of polymers containing 2-acrylamido-2-methyl-1-propanesulfonic acid or 5-fluorouracil”, Polymer Bulletin, 46, 241-248, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔