跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余昌憲
研究生(外文):Chang-Sian Yu
論文名稱:燃料電池質子傳導膜之操作環境安定性探討
論文名稱(外文):Investigation on the operating stability of the proton conducting membranes
指導教授:林智汶
指導教授(外文):Chi-Wen Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:135
中文關鍵詞:質子交換薄膜薄膜老化料電池壽命薄膜耐久性測試
外文關鍵詞:DegradationFuel cellProton Exchange MembraneLifetimedurability test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討燃料電池在不同操作環境下,對高分子電解質薄膜所造成之老化現象,並且探討薄膜老化機制,以及老化對薄膜基本性質之影響。


論文的第一部份以全氟系高分子Nafion®115作為電解質材料,探討不同金屬離子、溫度、過氧化氫濃度對老化速率之影響,並且針對老化後薄膜性質進行一系列探討,包括化學結構、熱性質、機械強度和質子傳導率等。 由離子層析得知,薄膜置換不同金屬離子時,發現亞鐵離子與銅離子存在時,能加速薄膜老化速率。而且高溫的環境下,以及高濃度的過氧化氫和亞鐵離子,造成較高的薄膜老化速率。由FTIR分析顯示,在氧化過程中,磺酸根與醚基吸收波峰強度明顯減少,主要因自由基優先攻擊Nafion®115薄膜側鏈段。同時,藉由交流阻抗分析發現,隨著老化時間增加,阻抗值會提高,主因是磺酸根數量減少造成質子導電度的降低。薄膜甲醇滲透率與含水率也隨老化時間而提升,由電子顯微鏡觀察分析結果顯示,隨著老化時間增加,薄膜表層因氧化而形成微小空隙以及孔洞。


藉由熱重分析儀(TGA)和微差掃描熱卡計(DSC)的分析可知,由於老化初期離子團簇受到氧化破壞,使得離子團簇間氫鍵作用力減弱,並且C-S鍵結容易被裂解,其磺酸根裂解溫度與離子團簇轉移溫度降低。老化後期,置換氫型反應溫度80℃剛好接近離子團簇轉移溫度,致使部份離子團簇有足夠能力進行分子鏈的重排,其磺酸根裂解溫度與離子團簇轉移溫度反而增加。由動態機械分析(DMA)得知,老化初期,由於自由基攻擊薄膜分子鏈造成高分子斷鏈,使得薄膜分子量的減少,導致儲存模數(剛性)下降。老化後期,高分子側鏈的分子鏈段解離,非結晶區側鏈段的減少促使Nafion薄膜結晶度提升(XRD證實),使得儲存模數(剛性)增加。結晶區熔融溫度、主鏈段裂解溫度以及α玻璃轉移溫度則不會隨著老化時間而改變,推測主因是Nafion主鏈段上具有強共價鍵結的C-F結構,致使其不易受化學破壞。


本研究也進行TGA/MS分析,推知Nafion薄膜熱老化過程中,首先溫度低於240℃是去除薄膜內部的水分子。當裂解溫度達到280℃時,開始裂解磺酸根,釋放出SO2;接下來側鏈段連續被裂解形成SOF2、CXFY、CXFYOZ、COF、COF2。最後,當熱裂解溫度達到500℃以上時,碳氟(-CF2-)主鏈段開始被熱裂而解釋放出CXFY氣體。然而,熱裂解溫度在300℃~600℃之間,COF2與水會進行二次反應而形成CO2與HF。


本研究第二部份以碳氫系聚乙烯醇基質子交換薄膜S20P80為探討對象,S20P80係指以20%磺酸化丁二酸(Sulfosuccinic acid, SSA)作為交聯劑,以80%離子性高分子poly(syrene sulfonic acid-co-male acid (PSSA-co-MA)穿網其間,作為提供質子之來源。首先,針對探討老化溫度對S20P80薄膜水解之影響,由FTIR可知,高溫下,薄膜容易遭受水解造成酯基(C-O-C)斷鍵和交聯結構破壞,使得部分PSSA-MA流失,此可由水溶液中之電導度上升以及pH值下降的結果證實。


過氧化氫對S20P80薄膜老化之影響:由FTIR可知,在室溫(30℃)下,自由基攻擊C-O-C、苯環與乙烯基之接點氫原子,導致C-O、SO3H+和苯環特徵波峰強度減弱。溫度增加時,加速自由基對膜材的攻擊,導致相對應之特徵波峰強度也隨之減弱。當薄膜置換成亞鐵離子時,其老化結果亦然。在高溫與高濃度過氧化氫條件下,薄膜重量損失加速,薄膜含水率與甲醇滲透率提高,應是薄膜交聯結構遭受破壞所導致。由XRD與FTIR可知,當老化溫度為35℃時,薄膜結晶度下降,且OH吸收波峰向高波數位移,表示PVA結晶遭受破壞,而PVA上OH的氫鍵作用力降低。當老化溫度增加,薄膜結晶度反有些微提高,而且OH吸收波峰向低波數位移。推測交聯結構破壞和PVA結晶度減少,導致PVA分子鏈更加容易移動,在含水下(塑化效應),其玻璃轉移溫度大幅下降。當PVA玻璃轉移溫度剛好接近老化溫度時,促使PVA分子鏈部份重新排列可能。由拉力試驗與DMA可知,當老化溫度提高時,楊氏模數、抗張強度、破壞伸長率和儲存模數也隨之下降。
Part I. The perfluorinated ionomer membrane (Nafion®115) used as the electrolyte material, The effects of metal ions、temperature and hydrogen peroxide concentration were investigated membrane degradation rate and the effect of deteriorated membrane properties such as chemical structure, thermal properties mechanical strength and proton conductivity etc. Ion Chromatography exhibits the presence of Fe2+ and Cu2+ ions enhanced the rate of membrane degradation. And high temperature, high hydrogen peroxide concentration and ferrous ions increased membrane degradation rate. The result of FTIR measurement of deteriorated membrane revealed that side chains absorbed peak strength apparent decreased, most probably because radicals attacked the side chain of Nafion®115. AC Impedance revealed the impedance enhanced with the increasing of degradation time. It is because that sulfonic acid contents reduced leads to proton conductivity decreased. The methanol permeability and water uptake increased with increasing degradation time. SEM revealed the breakdown of the membrane surface started from the formation of small bubbles and the bubbles gradually grew to the pinholes.


TGA and DSC shown ionic clusters oxidation by H2O2 at the primary stage, which ionic clusters hydrogen bonding interaction decrease and C-S bond decomposed easily, which leads to decomposition temperature of sulfonate groups and ionic clusters transition temperature decrease. Displacement of H+ reacting temperature (80℃) exactly to near ionic clusters transition temperature at a later stage, resulting in a part of ionic clusters enough be ability to molecular rearrangement, which decomposition temperature of sulfonate groups and ionic clusters transition temperature increased. DMA data shows that because of free radicals attack the membrane molecular chain to make the macromolecular chain breaking, resulting in the membrane molecular weight and store modulus decreased at the primary stage. The decomposition of molecular chain segment of macromolecular side chain, then the crystallinity of Nafion membrane and store modulus increased with amorphous side chain reduced. The crystalline domains melting、decomposition temperature of main chain and α glass transition temperature had no change with degradation time, which suggested the C-F composition of main chain have strong covalent bonds and have not suffered from chemical break easily.


This paper also TGA/MS was investigated, it is possible to suggest the Nafion membrane thermal degradation process. The first temperature low 240℃ can be attributed to the loss of residual water in the Nafion membrane. The decomposition temperature approached 280℃, the Nafion loses its the sulfonic acid groups and the release of sulfur dioxide, then side chain continuous decomposed the product of SOF2、CXFY、CXFYOZ、COF、COF2. Finally, as the decomposition temperature above 500℃, it began the thermal decomposition of main chain and the released of CXFY gas. At the same time, the thermal decomposition temperature between 300℃ and 600℃, the formation of CO2 and HF, due to a secondary reaction of CF2O and water.


Part II. Hydrocarbon proton exchange membrane base on polyvinyl alcohol (S20P80) was investigated. S20P80 membrane indicates 20% Sulfosuccinic acid as crosslinked agent and 80% poly(syrene sulfonic acid-co-male acid (PSSA-co-MA) as supply with the proton source. First of all, effect of the S20P80 membrane hydrolysis with different degradation temperature. FTIR study, At high temperature, the membrane suffers from hydrolysis easily, which it makes ester group chain scission and crosslink structure is broken, and the part of PSSA-MA flowed away, then water solution test result found electrode conductivity increased and pH value decreased.


The effect of S20P80 membrane degradation with hydrogen peroxide was investigated: FTIR results revealed, radicals attack ester group、aromatic and vinyl on the point of hydrogen atom at room temperature, resulting in C-O、SO3H and aromatic characteristic peak intensity decreased. The temperature increased, accelerating radicals attack on the membrane, leading to opposite of characteristic peak strong decreased. As the replacement of ferrous ions, the result is similar to above. In high temperature and high concentration condition, the membrane weight loss, water uptake and methanol permeability raised, due to the membrane crosslink structure was broken. XRD and FTIR exhibited that degradation temperature 35℃, the membrane crystalline decreased, and OH absorption peak moved to high waveumber. Degradation temperature increased, the membrane little increased and OH absorption peak moved to low waveumber, due to crosslink structure was broken and PVA crystalline decreased, resulting in PVA molecular chain more easy to move. With the water (plasticize effect), the glass transition temperature great decreased. As PVA glass transition temperature is near to degradation temperature, which accelerated PVA molecular chain a part of molecular rearrangement. Mechanical tensile and DMA results, degradation temperature increased, the Young’s modulus、tensile strength、elongation and store modulus decreased.
中文摘要…………………………………………………Ⅰ
英文摘要…………………………………………………Ⅲ
誌謝………………………………………………………Ⅵ
總目錄……………………………………………………Ⅶ
表目錄……………………………………………………Ⅹ
圖目錄……………………………………………………ⅩI

第一章 緒論....................................1
1.1 簡介....................................1
1.2 薄膜種類................................1
1.3 燃料電池運作............................3
1.4 研究動機與目的..........................4
第二章 文獻回顧................................6
2.1 薄膜機械老化............................6
2.1.1 低溼度..................................6
2.1.2 高電池電壓..............................7
2.1.3 高溫度..................................7
2.1.4 其他....................................8
2.2 薄膜熱老化.............................10
2.3 薄膜化學老化與電化學老化...............13
2.3.1 電池運作中自由基之產生.................13
2.3.2 自由基對薄膜老化之影響.................16
2.3.3 金屬污染物對薄膜老化之影響.............17
2.3.4 不飽和芳香族薄膜之老化.................20
2.3.5 接枝薄膜之老化.........................22
2.3.6 Nafion®薄膜之老化......................24
第三章 原理...................................29
3.1 傅立葉紅外線吸收光譜儀.................29
3.2 熱重損失分析儀 (Thermo-gravimetric Analysis,TGA)................................30
3.3 交流阻抗分析儀 (AC-Impendence).........31
3.4 動態機械分析儀 (Dynamic Mechanical Analysis,DMA)................................36
3.5 X光繞射分析儀 (X-ray diffraction,XRD)..........................................40
3.6 掃描式電子顯微鏡 (Scanning Electron Microscopy,SEM)..............................41
3.7 示差掃描式熱卡計 (Differential Scanning Calorimeter,DSC).............................42
3.8 離子層析儀 (Ion Chromatography,IC)....43
3.9 熱分析-質譜出氣分析儀..................43
3.10 拉伸測試 (Tension Test)................45
第四章 實驗設備與步驟.........................46
4.1 實驗藥品...............................46
4.2 實驗儀器...............................48
4.3 材料製備...............................49
4.3.1 Nafion®115薄膜前處理...................49
4.3.2 將Nafion®115薄膜置換為不同型金屬.......50
4.3.3 Nafion®115薄膜老化測試.................50
4.3.4 前處理 PSSA-MA......................51
4.3.5 PVA系薄膜製備..........................51
4.3.6 PVA系薄膜老化測試......................53
4.4 薄膜老化之分析與鑑定...................54
4.4.1 傅立葉紅外線光譜分析...................54
4.4.2 熱重分析儀.............................54
4.4.3 示差掃描式熱卡計.......................54
4.4.4 交流阻抗實驗流程.......................54
4.4.5 飽和含水率分析.........................55
4.4.6 離子交換容量實驗流程...................56
4.4.7 甲醇滲透率實驗.........................56
4.4.8 X光繞射分析............................57
4.4.9 動態機械熱分析儀.......................57
4.4.10 拉伸測試...............................58
4.4.11 離子層析儀.............................58
4.4.12 熱分析-質譜出氣分析儀..................58
第五章 結果與討論.............................59
5.1 薄膜老化的變因.........................59
5.1.1 金屬離子對薄膜老化速率的影響...........59
5.1.2 溫度對薄膜老化速率的影響...............61
5.1.3 亞鐵離子濃度對薄膜老化速率的影響.......62
5.1.4 過氧化氫濃度對薄膜老化速率的影響.......64
5.2 薄膜的重量損失.........................65
5.3 傅立葉轉換紅外線光譜儀(FTIR)...........66
5.4 老化對質子傳導率和離子交換容量的影響...70
5.5 掃描電子顯微鏡觀察老化後薄膜的型態.....71
5.6 老化對甲醇滲透率與飽和含水率的影響.....73
5.7 熱重損失分析儀(TGA)與微差式掃描熱卡計(DSC)..................................74
5.8 老化對薄膜機械性質之影響-動態機械熱分析 (DMA).........................79
5.9 老化對薄膜結晶度之影響.................81
5.10 熱分析-質譜出氣分析儀(TG/MS)...........83
5.11 S20P80薄膜之水解.......................90
5.11.1 溫度對S20P80薄膜水解之影響.............91
5.11.2 溫度對PVA/SSA20薄膜水解之影響..........95
5.12 H2O2對S20P80薄膜老化之影響.............97
5.12.1 溫度對S20P80薄膜老化之影響.............97
5.12.2 H2O2對Fe2+-S20P80薄膜老化之影響.......100
5.13 H2O2對S20P80薄膜重量損失之影響........101
5.14 H2O2對S20P80薄膜含水率和甲醇滲透率之影響...........................................103
5.15 H2O2對S20P80薄膜結晶度之影響..........104
5.16 H2O2對S20P80薄膜質子傳導率和IEC值之影響...........................................106
5.17 H2O2對S20P80薄膜對機械強度之影響-動態機械熱分析、拉力試驗....107
5.18 添加不同含量硫酸氫銫S20P80薄膜對重量損失的影響.................109
第六章 結論..................................111
第七章 參考文獻..............................113
1. A. B. LaConti, M. Hamdan, R.C. McDonald. In: W. Vielstich, A. Lamm, H.
Gasteiger, editors. Handbook of fuel cells: fundamentals, technology, and
applications, vol. 3. Chichester, England: Wiley, 647–662 (2003) .

2. R. B. Hodgdon Jr, J. F. Enos and E. J. Aiken. “Sulfonated polymers of
a,β,β-trifluorostyrene sulfonic acid with applications to structures and cell”, United States Patent 3 341 366 (1967) .

3. R. B. Hodgdon Jr, J.F. Enos and E. J. Aiken. “Process of sulfonating poly-alpha, beta, beta-trifluorostyrene”, United States Patent 3 442 825 (1969) .

4. V. F. D’Agostino, J. Y. Lee and E. H. Cook. “Trifluorostyrene sulfonic acid membranes”, United States Patent 4 012 303 (1977) .

5. J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu and H. Zhang. “Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells”, Physical Chemistry Chemical Physics, 5(3), 611–615 (2003) .

6. Y. P. Patil, T. A. P. Seery, M. T. Shaw and R. S. Parnas. “In situ water sensing in a Nafion membrane by fluorescence spectroscopy”, Industrial and Engineering Chemistry Research, 44(16), 6141–6147 (2005) .

7. C. Huang, K. S. Tan, J. Lin and K. L. Tan . “XRD and XPS analysis of the degradation of the polymer electrolyte in H2–O2 fuel cell”, Chemical Physics Letters, 371(1–2), 80–85 (2003) .

8. Dipl.-Chem. and A. Panchenko. Institute fur Phzsikalische Chemie der Universitat Stuttgart (2004). Available from: (http://elib.uni-stuttgart.de/opus/volltexte/2004/2088/pdf/Panchenko.pdf).

9. M. K. Kadirov, A. Bosnjakovic and S. Schlick . “Membrane-Derived Fluorinated Radicals Detected by Electron Spin Resonance in UV-Irradiated Nafion and Dow Ionomers: Effect of Counterions and H2O2”, Journal of Physical Chemistry B, 109(16), 766–7670 (2005) .

10. J. Healy , C. Hayden , T. Xie , K. Olson , R. Waldo , M. Brundage , H. Gasteiger and J. Abbott. “Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells”, Fuel Cells, 5(2), 302–308 (2005) .

11. S. D. Knights, K. M. Colbow, J. St-Pierre and D. P. Wilkinson. “Aging mechanisms and lifetime of PEFC and DMFC”, Journal of Power Sources, 127(1–2), 127–134 (2004) .

12. A. Pozio, R. F. Silva, M. De Francesco and L. Giorgi. “Nafion degradation in PEFCs from end plate iron contamination”, Electrochim Acta, 48(11), 1543–1549 (2003) .

13. J. Yu, T. Matsuura, Y. Yoshikawa, M. N. Islam and M. Hori. “In situ analysis of performance degradation of a PEMFC under nonsaturated humidification”, Electrochemical and Solid-State Letters, 8(3), A156–158 (2005) .

14. E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto. “Degradation study of MEA for PEMFCs under low humidity conditions”, Electrochemical and Solid-State Letters, 7(7), A209–A211 (2004) .

15. J. Xie, D. L. Wood III, D. M. Wayne, T. A. Zawodzinski, P. Atanassov and R. L. Borupa. “Durability of PEFCs at high humidity conditions”, Journal of The Electrochemical Society, 152(1), A104–A113 (2005) .

16. K. Teranishi, K. Kawata, S. Tsushima and S. Hirai. “Degradation Mechanism of PEMFC under Open Circuit Operation”, Electrochemical and Solid-State Letters, 9(10), A475-A477 (2006) .

17. S. Y. Lee, E.A. Cho, J. H. Lee, H. J. Kim, T. H. Lim, I. H. Oh and J. Won. “Effects of Purging on the Degradation of PEMFCs Operating with Repetitive On/Off Cycles”, Journal of The Electrochemical Society, 154(2), B194-B200 (2007) .

18. B. Du, R. Pollard, J. Elter. 2006 Fuel cell Seminar Abstract, Courtesy Associates, Hawaii, 61(2006).

19. U. Beuscher, S. J. C. Cleghorn and W. B. Johnson. “Challenges for PEM fuel cell membranes”, International Journal of Energy Research, 29, 1103-1112 (2005) .

20. A. Taniguchi, T. Akita, K. Yasuda and Y. Miyazaki. “Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation”, Journal of Power Sources, 130(1–2), 42–49 (2004) .

21. W. Liu, K. Ruth and G. Rusch. “The membrane durability in PEM fuel cells”, Journal of New Materials for Electrochemical Systems, 4(4), 227–232 (2001) .

22. M. Wakizoe, H. Murata and H. Takei. Asahi Chemical Aciplexs membrane for PEMFC. Proceedings of fuel cell seminar, Portland, USA, 487–490 (2000) .

23. C. A. Wilkie, J. R. Thomsen and M. L. Mittleman. “Interaction of poly(methyl methacrylate) and nafions”, Journal of Applied Polymer Science, 42(4), 901–909 (1991) .

24. S. R. Samms, S. Wasmus and R. F. SavineI. “Thermal stability of Nafion® in simulated fuel cell environments”, Journal of The Electrochemical Society, 143(2), 1498–1504 (1996) .

25. Q. Deng, C. A. Wilkie, R. B. Moore and K. A. Mauritz. “TGA-FTIR investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites”, Polymer, 39(24), 5961–5972 (1998) .

26. D. L. Feldheim, D. R. Lawson and C. R. Martin. “Influence of the sulfonate counteraction on the thermal stability of Nafion perfluorosulfonate membranes”, Journal of Polymer Science Part B: Polymer Physics, 31(8), 953–957 (1993) .

27. S. Hietala, M. Koel, E. Skou, M. Elomaa and F. Sundholm. “Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride)”, Journal of Materials Chemistry, 8(5), 1127-1132 (1998) .

28. S. Hietala, S. Holmberg, M. Karjalainen, J. Na¨sman, M. Paronen, R. Serimaa, F. Sundholm and S. Vahvaselka. “Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes”, Journal of Materials Chemistry, 7(5), 721-726 (1997) .

29. R.C. McDonald, C.K. Mittelsteadt and E.L. Thompson. “Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies”, Fuel Cells, 4(3), 208–213 (2004) .

30. F. N. Büchi, B. Gupta, O. Haas and G. G. Scherer. “Study of radiationgrafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells”, Electrochim Acta, 40(3), 345–353 (1995) .

31. M. Inaba, H. Yamada, J. Tokunaga and A. Tasaka. “Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation”, Electrochemical and Solid-State Letters, 7 (12), A474-A476 (2004) .

32. N. Ramaswamy, N. Hakim and S. Mukerjee. “Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions”, Electrochimica Acta, 53, 3279–3295 (2008) .

33. W. Liu and D. Zuckerbrod. “In Situ Detection of Hydrogen Peroxide in PEM Fuel Cells”, Journal of The Electrochemical Society, 152 (6), A1165-A1170 (2005) .

34. T.J. Schmidt , U.A. Paulus , H.A. Gasteiger and R.J. Behm. “The oxygen
reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions”, Journal of Electroanalytical Chemistry, 508(1–2), 41–47 (2001) .

35. N. M. MarkovicÂ, T. J. Schmidt, V. Stamenkovic and P. N. Ross. “Oxygen
reduction reaction on Pt and Pt bimetallic surfaces: a selective review”, Fuel Cells, 1(2), 105–116 (2001) .

36. A. Panchenko , H. Dilger , E. Möller , T. Sixt and E. Roduner. “In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications”, Journal of Power Sources, 127(1–2), 325–330 (2004) .

37. A. Panchenko, H. Dilger, J. Kerres, M. Hein, A. Ullrich, T. Kaz and E. Roduner. “In-situ spin trap electron paramagnetic resonance study of fuel cell processes”, Physical Chemistry Chemical Physics, 6(11), 2891–2894 (2004) .

38. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman and M. E. Tisack. “Advanced materials for improved PEMFC performance and life”, Journal of Power Sources, 131(1–2), 41–48 (2004) .

39. M. Pianca, E. Barchiesi, G. Esposto and S. Radice. “End groups in fluoropolymers”, Journal of Fluorine Chemistry, 95(1–2), 71–84 ( 1999) .

40. L. Å. Lindén, J. F. Rabek, H. Kaczmarek, A. Kaminska and M. Scoponi. “Photooxidative degradation of polymers by HO•and HO•2 radicals generated during the photolysis of H2O2, FeCl3, and Fenton reagents”, Coordination Chemistry Reviews, 125(1–2), 195–217 (1993) .

41. H. Wang and G. A. Capuano. “Behavior of Raipore radiation-grafted polymer membranes in H2/O2 fuel cells”, Journal of The Electrochemical Society, 145(3), 780–784 (1998) .

42. T. Okada. In: W. Vielstich, A. Lamm, H. Gasteiger, editors. Handbook of fuel cells: fundamentals, technology, and applications, vol. 3. Chichester, England: Wiley, 627–46, (2003).

43. J. St-Pierre, D. P. Wilkinson, S. Knights and M. Bos. “Relationships between water management, contamination and lifetime degradation in PEFC”, Journal of New Materials for Electrochemical Systems, 3(2), 99–106 (2000) .

44. M. Shi and F. C. Anson. “Dehydration of protonated Nafion® coatings induced by cation exchange and monitored by quartz crystal microgravimetry”, Journal of Electroanalytical Chemistry, 425(1–2), 117–123 (1997) .

45. T. Okada, N. Nakamura, M.Yuasa and I. Sekine. “Ion and water transport
characteristics in membranes for polymer electrolyte fuel cells containing H+
and Ca2+ cations”, Journal of The Electrochemical Society, 144(8), 2744–2750
(1997) .

46. T. Okada. “Theory for water management in membranes for polymer electrolyte fuel cells: part 1. The effect of impurity ions at the anode side on the membrane performances”, Journal of Electroanalytical Chemistry, 465(1), 1–17 (1999) .

47. T. Okada. “Theory for water management in membranes for polymer electrolyte fuel cells: part 2. The effect of impurity ions at the cathode side on the membrane performances”, Journal of Electroanalytical Chemistry, 465(1), 18–29 (1999) .

48. T. Okada, H. Satou and M. Yuasa. “Effects of additives on oxygen reduction kinetics at the interface between platinum and perfluorinated ionomer”, Langmuir, 19(6), 2325–2332 (2003) .

49. G. Hu¨bner and E. Roduner. “EPR investigation of HO.Radical initiated
degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes”, Journal of Materials Chemistry, 9(2), 409–418 (1999) .

50. R. A. Assink , C. Arnold and R. P. Hollandsworth . “Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens”, Journal of Membrane Science, 56(2), 143–151 (1991) .

51. H. Kaczmarek, L. A. LindCn and J. F. Rabek. “Photo-oxidative degradation of poly(2,6-dimethyl-1,4-phenylene oxide) in the presence of concentrated hydroxy peroxide: the role of hydroxyl ( HO.) and hydroperoxy (HO.2) radicals”, Polymer Degradation and Stability, 47(2), 175–88 (1995) .

52. N. A. Weir. “Reactions of hydroxyl radicals with polystyrene”, European Polymer Journal, 14(1), 9–14 (1978) .

53. B. Mattsson , H. Ericson , L.M. Torell and F. Sundholm. “Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy”,Electrochimica Acta, 45(8–9), 1405–1408 (2000) .

54. M. M. Nasef and H. Saidi. “Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelectron spectroscopy”, Journal of New Materials for Electrochemical Systems, 5(3), 183–190 (2002) .

55. L. Gubler, H. Kuhn, T.J. Schmidt, G.G. Scherer, H.-P. Brack and K. Simbeck.“Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes”, Fuel Cells, 4(3), 196–207 (2004) .

56. S. Stucki, G. G. Scherer, S. Schlagowski and E. Fischer. “PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants”, Journal of Applied Electrochemistry, 28(10), 1041–1049 (1998) .

57. R.A. Morgan and W.H. Sloan.“Extrusion Finishing of Ferfluororinated Copolymer”, United States Patent 4 626 587 (1986) .

58. J.F. Imbalzano and D.L. Kerbow. “Stable Tetrafluoroethylene Copolymers”, United States Patent 4 743 658 (1988) .

59. Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda and Y. Miyazaki.“Dissolution of Nafion® membrane and recast Nafion® film in mixtures of methanol and water”, Journal of Power Sources, 126(1–2), 41–45 (2004) .

60. V. Tricoli. “Proton and methanol transport in poly(perfluorosulfonate)
membranes containing Cs+ and H+ cations”, Journal of The Electrochemical
Society, 145(11), 3798–3801 (1998) .

61. 柯以侃、周心如、董慧茹、賀秀平、張新祥,儀器分析儀,新文京發發出版有限公司。

62. D. A. Skoog, F. J. Holler and T. A. Nieman. “Principles of Instrumental Analysis”, Fifth Edition, 1998.

63. 蔡英文,同步輻射X光吸收光譜在鋰電池材料之應用,台灣科技大學, 碩士論文 (1999)。

64. 謝國煌、陳原振、曾勝茂,“動態機械分析儀之應用分析”, 科儀新知, 第十八卷四期,頁32 (1997)。

65. 羅聖全,”研發奈米科技的基本工具之一電子顯微鏡介紹–SEM”, 小奈米大世界 (2004)。

66. “離子層析儀”,弘光科技大學,環工系,空氣污染實驗室。(from: http://eh.hk.edu.tw/inside_page/Teacher/no10_download/Pm10.doc).

67. “質譜儀的原理與應用”,中央研究院/地球科學研究所。
(http://www.earth.sinica.edu.tw/~yu/Document/MassSpectrometer.ppt).

68. W. F. Smith. “Fundations of Materials Science and Engineering”, 2/E (1994) .

69. A. Gruger, A. R. Schmatko and P. Colomban. “Nanostructure of Nafion® membranes at different states of hydration An IR and Raman study”, Vibrational Spectroscopy, 26, 215-225 (2001) .

70. J. Surowiec and R. Bogoczek. “Studies on the thermal stability of the perfluorinated cation-exchange membrane Nafion-417”, Journal of Thermal Analysis and Calorimetry, 33, 1097-1102 (1988) .

71. S. H. de Almeida and Y. Kawano. “Thermal brhavior of Nafion membranes”, Journal of Thermal Analysis and Calorimetry, 58, 569-577 (1999) .

72. K. A. Page, K. M. Cable and R. B. Moore. “Molecular Origins of the Thermal Transitions and Dynamic Mechanical Relaxations in Perfluorosulfonate Ionomers”, Macromolecules, 38, 6472-6484 (2005) .

73. M. Fujimura, T. Hashimoto and H. Kawai. “Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes, 1. Origin of Two Scattering Maxima”, Electrochimica Acta, 43, 3719-3729 (1998) .

74. E. Stenhagen, S. Abrahamson and F. W. Mclafferty. Atlas of Mass Spectral Data, Vol. 1 & 2, Interscience Publishers, New York (1969) .

75. C.W. Lin, Y.F. Huang and A.M. kannan, “Semi-interpenetrating network based on crosslinked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton-conducting electrolyte membranes for fuel cell
application”, Journal of Power Sources, 164, 449 (2007) .

76. S. M.Haile, D. A. Boysen, C. R. I. Chisholm and R. B. Merle. “Solid acids as fuel cell electrolytes”, Nature, 410, 910 (2001) .
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top