1. A. B. LaConti, M. Hamdan, R.C. McDonald. In: W. Vielstich, A. Lamm, H.
Gasteiger, editors. Handbook of fuel cells: fundamentals, technology, and
applications, vol. 3. Chichester, England: Wiley, 647–662 (2003) .
2. R. B. Hodgdon Jr, J. F. Enos and E. J. Aiken. “Sulfonated polymers of
a,β,β-trifluorostyrene sulfonic acid with applications to structures and cell”, United States Patent 3 341 366 (1967) .
3. R. B. Hodgdon Jr, J.F. Enos and E. J. Aiken. “Process of sulfonating poly-alpha, beta, beta-trifluorostyrene”, United States Patent 3 442 825 (1969) .
4. V. F. D’Agostino, J. Y. Lee and E. H. Cook. “Trifluorostyrene sulfonic acid membranes”, United States Patent 4 012 303 (1977) .
5. J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu and H. Zhang. “Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells”, Physical Chemistry Chemical Physics, 5(3), 611–615 (2003) .
6. Y. P. Patil, T. A. P. Seery, M. T. Shaw and R. S. Parnas. “In situ water sensing in a Nafion membrane by fluorescence spectroscopy”, Industrial and Engineering Chemistry Research, 44(16), 6141–6147 (2005) .
7. C. Huang, K. S. Tan, J. Lin and K. L. Tan . “XRD and XPS analysis of the degradation of the polymer electrolyte in H2–O2 fuel cell”, Chemical Physics Letters, 371(1–2), 80–85 (2003) .
8. Dipl.-Chem. and A. Panchenko. Institute fur Phzsikalische Chemie der Universitat Stuttgart (2004). Available from: (http://elib.uni-stuttgart.de/opus/volltexte/2004/2088/pdf/Panchenko.pdf).
9. M. K. Kadirov, A. Bosnjakovic and S. Schlick . “Membrane-Derived Fluorinated Radicals Detected by Electron Spin Resonance in UV-Irradiated Nafion and Dow Ionomers: Effect of Counterions and H2O2”, Journal of Physical Chemistry B, 109(16), 766–7670 (2005) .
10. J. Healy , C. Hayden , T. Xie , K. Olson , R. Waldo , M. Brundage , H. Gasteiger and J. Abbott. “Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells”, Fuel Cells, 5(2), 302–308 (2005) .
11. S. D. Knights, K. M. Colbow, J. St-Pierre and D. P. Wilkinson. “Aging mechanisms and lifetime of PEFC and DMFC”, Journal of Power Sources, 127(1–2), 127–134 (2004) .
12. A. Pozio, R. F. Silva, M. De Francesco and L. Giorgi. “Nafion degradation in PEFCs from end plate iron contamination”, Electrochim Acta, 48(11), 1543–1549 (2003) .
13. J. Yu, T. Matsuura, Y. Yoshikawa, M. N. Islam and M. Hori. “In situ analysis of performance degradation of a PEMFC under nonsaturated humidification”, Electrochemical and Solid-State Letters, 8(3), A156–158 (2005) .
14. E. Endoh, S. Terazono, H. Widjaja and Y. Takimoto. “Degradation study of MEA for PEMFCs under low humidity conditions”, Electrochemical and Solid-State Letters, 7(7), A209–A211 (2004) .
15. J. Xie, D. L. Wood III, D. M. Wayne, T. A. Zawodzinski, P. Atanassov and R. L. Borupa. “Durability of PEFCs at high humidity conditions”, Journal of The Electrochemical Society, 152(1), A104–A113 (2005) .
16. K. Teranishi, K. Kawata, S. Tsushima and S. Hirai. “Degradation Mechanism of PEMFC under Open Circuit Operation”, Electrochemical and Solid-State Letters, 9(10), A475-A477 (2006) .
17. S. Y. Lee, E.A. Cho, J. H. Lee, H. J. Kim, T. H. Lim, I. H. Oh and J. Won. “Effects of Purging on the Degradation of PEMFCs Operating with Repetitive On/Off Cycles”, Journal of The Electrochemical Society, 154(2), B194-B200 (2007) .
18. B. Du, R. Pollard, J. Elter. 2006 Fuel cell Seminar Abstract, Courtesy Associates, Hawaii, 61(2006).
19. U. Beuscher, S. J. C. Cleghorn and W. B. Johnson. “Challenges for PEM fuel cell membranes”, International Journal of Energy Research, 29, 1103-1112 (2005) .
20. A. Taniguchi, T. Akita, K. Yasuda and Y. Miyazaki. “Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation”, Journal of Power Sources, 130(1–2), 42–49 (2004) .
21. W. Liu, K. Ruth and G. Rusch. “The membrane durability in PEM fuel cells”, Journal of New Materials for Electrochemical Systems, 4(4), 227–232 (2001) .
22. M. Wakizoe, H. Murata and H. Takei. Asahi Chemical Aciplexs membrane for PEMFC. Proceedings of fuel cell seminar, Portland, USA, 487–490 (2000) .
23. C. A. Wilkie, J. R. Thomsen and M. L. Mittleman. “Interaction of poly(methyl methacrylate) and nafions”, Journal of Applied Polymer Science, 42(4), 901–909 (1991) .
24. S. R. Samms, S. Wasmus and R. F. SavineI. “Thermal stability of Nafion® in simulated fuel cell environments”, Journal of The Electrochemical Society, 143(2), 1498–1504 (1996) .
25. Q. Deng, C. A. Wilkie, R. B. Moore and K. A. Mauritz. “TGA-FTIR investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites”, Polymer, 39(24), 5961–5972 (1998) .
26. D. L. Feldheim, D. R. Lawson and C. R. Martin. “Influence of the sulfonate counteraction on the thermal stability of Nafion perfluorosulfonate membranes”, Journal of Polymer Science Part B: Polymer Physics, 31(8), 953–957 (1993) .
27. S. Hietala, M. Koel, E. Skou, M. Elomaa and F. Sundholm. “Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride)”, Journal of Materials Chemistry, 8(5), 1127-1132 (1998) .
28. S. Hietala, S. Holmberg, M. Karjalainen, J. Na¨sman, M. Paronen, R. Serimaa, F. Sundholm and S. Vahvaselka. “Structural investigation of radiation grafted and sulfonated poly(vinylidene fluoride), PVDF, membranes”, Journal of Materials Chemistry, 7(5), 721-726 (1997) .
29. R.C. McDonald, C.K. Mittelsteadt and E.L. Thompson. “Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies”, Fuel Cells, 4(3), 208–213 (2004) .
30. F. N. Büchi, B. Gupta, O. Haas and G. G. Scherer. “Study of radiationgrafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells”, Electrochim Acta, 40(3), 345–353 (1995) .
31. M. Inaba, H. Yamada, J. Tokunaga and A. Tasaka. “Effect of Agglomeration of Pt/C Catalyst on Hydrogen Peroxide Formation”, Electrochemical and Solid-State Letters, 7 (12), A474-A476 (2004) .
32. N. Ramaswamy, N. Hakim and S. Mukerjee. “Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions”, Electrochimica Acta, 53, 3279–3295 (2008) .
33. W. Liu and D. Zuckerbrod. “In Situ Detection of Hydrogen Peroxide in PEM Fuel Cells”, Journal of The Electrochemical Society, 152 (6), A1165-A1170 (2005) .
34. T.J. Schmidt , U.A. Paulus , H.A. Gasteiger and R.J. Behm. “The oxygen
reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions”, Journal of Electroanalytical Chemistry, 508(1–2), 41–47 (2001) .
35. N. M. MarkovicÂ, T. J. Schmidt, V. Stamenkovic and P. N. Ross. “Oxygen
reduction reaction on Pt and Pt bimetallic surfaces: a selective review”, Fuel Cells, 1(2), 105–116 (2001) .
36. A. Panchenko , H. Dilger , E. Möller , T. Sixt and E. Roduner. “In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications”, Journal of Power Sources, 127(1–2), 325–330 (2004) .
37. A. Panchenko, H. Dilger, J. Kerres, M. Hein, A. Ullrich, T. Kaz and E. Roduner. “In-situ spin trap electron paramagnetic resonance study of fuel cell processes”, Physical Chemistry Chemical Physics, 6(11), 2891–2894 (2004) .
38. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman and M. E. Tisack. “Advanced materials for improved PEMFC performance and life”, Journal of Power Sources, 131(1–2), 41–48 (2004) .
39. M. Pianca, E. Barchiesi, G. Esposto and S. Radice. “End groups in fluoropolymers”, Journal of Fluorine Chemistry, 95(1–2), 71–84 ( 1999) .
40. L. Å. Lindén, J. F. Rabek, H. Kaczmarek, A. Kaminska and M. Scoponi. “Photooxidative degradation of polymers by HO•and HO•2 radicals generated during the photolysis of H2O2, FeCl3, and Fenton reagents”, Coordination Chemistry Reviews, 125(1–2), 195–217 (1993) .
41. H. Wang and G. A. Capuano. “Behavior of Raipore radiation-grafted polymer membranes in H2/O2 fuel cells”, Journal of The Electrochemical Society, 145(3), 780–784 (1998) .
42. T. Okada. In: W. Vielstich, A. Lamm, H. Gasteiger, editors. Handbook of fuel cells: fundamentals, technology, and applications, vol. 3. Chichester, England: Wiley, 627–46, (2003).
43. J. St-Pierre, D. P. Wilkinson, S. Knights and M. Bos. “Relationships between water management, contamination and lifetime degradation in PEFC”, Journal of New Materials for Electrochemical Systems, 3(2), 99–106 (2000) .
44. M. Shi and F. C. Anson. “Dehydration of protonated Nafion® coatings induced by cation exchange and monitored by quartz crystal microgravimetry”, Journal of Electroanalytical Chemistry, 425(1–2), 117–123 (1997) .
45. T. Okada, N. Nakamura, M.Yuasa and I. Sekine. “Ion and water transport
characteristics in membranes for polymer electrolyte fuel cells containing H+
and Ca2+ cations”, Journal of The Electrochemical Society, 144(8), 2744–2750
(1997) .
46. T. Okada. “Theory for water management in membranes for polymer electrolyte fuel cells: part 1. The effect of impurity ions at the anode side on the membrane performances”, Journal of Electroanalytical Chemistry, 465(1), 1–17 (1999) .
47. T. Okada. “Theory for water management in membranes for polymer electrolyte fuel cells: part 2. The effect of impurity ions at the cathode side on the membrane performances”, Journal of Electroanalytical Chemistry, 465(1), 18–29 (1999) .
48. T. Okada, H. Satou and M. Yuasa. “Effects of additives on oxygen reduction kinetics at the interface between platinum and perfluorinated ionomer”, Langmuir, 19(6), 2325–2332 (2003) .
49. G. Hu¨bner and E. Roduner. “EPR investigation of HO.Radical initiated
degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes”, Journal of Materials Chemistry, 9(2), 409–418 (1999) .
50. R. A. Assink , C. Arnold and R. P. Hollandsworth . “Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens”, Journal of Membrane Science, 56(2), 143–151 (1991) .
51. H. Kaczmarek, L. A. LindCn and J. F. Rabek. “Photo-oxidative degradation of poly(2,6-dimethyl-1,4-phenylene oxide) in the presence of concentrated hydroxy peroxide: the role of hydroxyl ( HO.) and hydroperoxy (HO.2) radicals”, Polymer Degradation and Stability, 47(2), 175–88 (1995) .
52. N. A. Weir. “Reactions of hydroxyl radicals with polystyrene”, European Polymer Journal, 14(1), 9–14 (1978) .
53. B. Mattsson , H. Ericson , L.M. Torell and F. Sundholm. “Degradation of a fuel cell membrane, as revealed by micro-Raman spectroscopy”,Electrochimica Acta, 45(8–9), 1405–1408 (2000) .
54. M. M. Nasef and H. Saidi. “Post-mortem analysis of radiation grafted fuel cell membrane using X-ray photoelectron spectroscopy”, Journal of New Materials for Electrochemical Systems, 5(3), 183–190 (2002) .
55. L. Gubler, H. Kuhn, T.J. Schmidt, G.G. Scherer, H.-P. Brack and K. Simbeck.“Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes”, Fuel Cells, 4(3), 196–207 (2004) .
56. S. Stucki, G. G. Scherer, S. Schlagowski and E. Fischer. “PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants”, Journal of Applied Electrochemistry, 28(10), 1041–1049 (1998) .
57. R.A. Morgan and W.H. Sloan.“Extrusion Finishing of Ferfluororinated Copolymer”, United States Patent 4 626 587 (1986) .
58. J.F. Imbalzano and D.L. Kerbow. “Stable Tetrafluoroethylene Copolymers”, United States Patent 4 743 658 (1988) .
59. Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda and Y. Miyazaki.“Dissolution of Nafion® membrane and recast Nafion® film in mixtures of methanol and water”, Journal of Power Sources, 126(1–2), 41–45 (2004) .
60. V. Tricoli. “Proton and methanol transport in poly(perfluorosulfonate)
membranes containing Cs+ and H+ cations”, Journal of The Electrochemical
Society, 145(11), 3798–3801 (1998) .
61. 柯以侃、周心如、董慧茹、賀秀平、張新祥,儀器分析儀,新文京發發出版有限公司。
62. D. A. Skoog, F. J. Holler and T. A. Nieman. “Principles of Instrumental Analysis”, Fifth Edition, 1998.
63. 蔡英文,同步輻射X光吸收光譜在鋰電池材料之應用,台灣科技大學, 碩士論文 (1999)。64. 謝國煌、陳原振、曾勝茂,“動態機械分析儀之應用分析”, 科儀新知, 第十八卷四期,頁32 (1997)。65. 羅聖全,”研發奈米科技的基本工具之一電子顯微鏡介紹–SEM”, 小奈米大世界 (2004)。
66. “離子層析儀”,弘光科技大學,環工系,空氣污染實驗室。(from: http://eh.hk.edu.tw/inside_page/Teacher/no10_download/Pm10.doc).
67. “質譜儀的原理與應用”,中央研究院/地球科學研究所。
(http://www.earth.sinica.edu.tw/~yu/Document/MassSpectrometer.ppt).
68. W. F. Smith. “Fundations of Materials Science and Engineering”, 2/E (1994) .
69. A. Gruger, A. R. Schmatko and P. Colomban. “Nanostructure of Nafion® membranes at different states of hydration An IR and Raman study”, Vibrational Spectroscopy, 26, 215-225 (2001) .
70. J. Surowiec and R. Bogoczek. “Studies on the thermal stability of the perfluorinated cation-exchange membrane Nafion-417”, Journal of Thermal Analysis and Calorimetry, 33, 1097-1102 (1988) .
71. S. H. de Almeida and Y. Kawano. “Thermal brhavior of Nafion membranes”, Journal of Thermal Analysis and Calorimetry, 58, 569-577 (1999) .
72. K. A. Page, K. M. Cable and R. B. Moore. “Molecular Origins of the Thermal Transitions and Dynamic Mechanical Relaxations in Perfluorosulfonate Ionomers”, Macromolecules, 38, 6472-6484 (2005) .
73. M. Fujimura, T. Hashimoto and H. Kawai. “Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membranes, 1. Origin of Two Scattering Maxima”, Electrochimica Acta, 43, 3719-3729 (1998) .
74. E. Stenhagen, S. Abrahamson and F. W. Mclafferty. Atlas of Mass Spectral Data, Vol. 1 & 2, Interscience Publishers, New York (1969) .
75. C.W. Lin, Y.F. Huang and A.M. kannan, “Semi-interpenetrating network based on crosslinked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride) as proton-conducting electrolyte membranes for fuel cell
application”, Journal of Power Sources, 164, 449 (2007) .
76. S. M.Haile, D. A. Boysen, C. R. I. Chisholm and R. B. Merle. “Solid acids as fuel cell electrolytes”, Nature, 410, 910 (2001) .