|
[1].Acklam, P. J. (2004). An algorithm for computing the inverse normal cumulative distribution function. [2].Bensignor, R. (2001). New thinking in technical analysis: trading models from the masters. Milton: wrightbooks. [3].Berkan, R. C., & Trubatch, S. L. (1997). Fuzzy systems design principles - building fuzzy If-Then rule bases. New York: IEEE Press. [4].Beynon, M. J., & Peel, M. J. (2001). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega - The International Journal of Management Science, 29, 561-576. [5].Bojadziev, G., & Bojadziev, M. (1997). Fuzzy logic for business, finance, and management. River Edge, NJ: World Scientific. [6].Brane, M., & Rutherford, D. A. (1978). Fuzzy relations in a control setting. Kybenetes, 7(3), 185-188. [7].Cao, L. J., & Tay, F. E. H. (2003). Support Vector Machine with Adaptive Parameters in Financial Time Series Forecasting. IEEE Trans. Neural Networks, 14(6), 1506-1518. [8].Chen, S. J., & Chen, S. M. (2005). Aggregating fuzzy opinions in the heterogeneous group decision-making environment,. Cybernetics and Systems: An International Journal, 36(3), 309-338. [9].Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81, 311-319. [10].Chen, S. M. (2002). Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems, 33, 1-16. [11].Chen, S. M., & Chung, N. Y. (2006). Forecasting enrollments using high-order fuzzy time series and genetic algorithms. International Journal of Intelligent Systems, 21 485-501. [12].Chen, S. M., & Hsu, C. C. (2004). A new method to forecast enrollments using fuzzy time series. Applied Science and Eng, 2, 234-244. [13].Chen, T.-L., Cheng, C.-H., & Teoh, H. J. (2007). Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Physica A, 380, 377-390. [14].Chen, T. L., Cheng, C. H., & Teoh, H. J. (2007). High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets. Physica A: Statistical Mechanics and its Applications. [15].Cheng, C. H., Chen, T. L., & Chiang, C. H. (2006). Trend-weighted fuzzy time-series model for TAIEX forecasting. Lect. Notes Comput. Sci, 4234, 469-477. [16].Cheng, C. H., Teoh, H. J., & Chen, T. L. (2007a). Forecasting Stock Price Index Using Fuzzy Time-Series Based on Rough Set. Paper presented at the FSKD 2007, Hainan. [17].Cheng, C. H., Teoh, H. J., & Chen, T. L. (2007b). High-Order Fuzzy Time Series Based on Rough Set for Forecasting Taiex. Paper presented at the Machine Learning and Cybernetics, Hong Kong. [18].Cheng, C. H., Teoh, H. J., & Li, C. H. (2007). Fuzzy Weighted-Transitional Matrix for Forecasting Time Series Data. Paper presented at the Machine Learning and Cybernetics Hong Kong. [19].Devore, J. L. (2004). Probability and Statistics for Engineering and the Sciences (sixth ed.). Belmont: Duxbury. [20].Dhar, V., & Chou, D. (2001). A Comparison of Nonlinear Methods for Predicting Earnings Surprises and Returns. IEEE Trans. Neural Networks, 12(4), 907-921. [21].Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. Internat. J. Systems Science, 9 (6), 613-626. [22].Dubois, D., Prade, H., & . (1988). Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York: Plenum Press. [23].Grzymala-Busse, J. (1992). LERS—a system for learning from examples based on rough sets. Dordrecht: Kluwer Academic Publishers. [24].Grzymala-Busse, J. W. (1997). A new version of the rule induction system LERS. Fundamenta Informaticae, 31, 27-39. [25].Huarng, K. (2001). Heuristic models of fuzzy time series for forecasting Fuzzy Sets and Systems, 123, 137-154. [26].Huarng, K., & Yu, H.-k. (2003). An N-th order heuristic fuzzy time series model for TAIEX forecasting. internat. J. Fuzzy Syztems, 5(4), 247-253. [27].Huarng, K. H. (2001). Effective lengths of intervals to improve forecasting in fuzzy time-series. Fuzzy Sets and Systems, 123, 387-395. [28].Hwang, J. R., Chen, S.-M., & Lee, C.-H. (1998). Handling forecasting problems using fuzzy time series. Fuzzy Sets and Systems, 100, 217-228. [29].Kahn, M. N. (2006). Technical Analysis Plain and Simple - Charting the markets in your language (second ed.). New Jersey: Prentice Hall. [30].Kandel, M., & Friedman. (1998). Defuzzification using most optical values. IE/EE Trans on Sytems, man & Cybernetics part B, 28(6), 901-906. [31].Kaufmann, A., & Gupta, M. M. (1988). Fuzzy mathematical models in engineering and management science. Amsterdam: North-Holland [32].Kendall, S. M., & Ord, K. (1990). Time series (3rd ed.). New York: Oxford university press. [33].Kim, M.-J., Min, S.-H., & Han, I. (2006). An evolutionary approach to the combination of multiple classifiers to predict a stock price index. Expert System with applications, 31(2), 241-247. [34].Kmenta, J. (1986). Elements of Econometrics: MacMillan. [35].Kumar, P., Krishna, P. R., Bapi, R. S., & De, S. K. (2007). Rough clustering of sequential data. Data & Knowledge Engineering, 63, 183-199. [36].Kuo, R. J., Chen, C. H., & Hwang, Y. C. (2001). An intelligence stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets and Systems, 118, 21-45. [37].Lin, H. L., & Chen, C. J. (2004). Basic statistics concepts and applications (Vol. 1). Taipei: Yeh yeh book gallery. [38].Lin, S. Y. (2000). Forecasting Taiwan Stock Index Future-An Application of Fuzzy Time series. Chaoyang University of Technology, Taichung County. [39].McLaughlin, M. P. (2001, 2007/8/11). A Compendium of Common Probability Distributions. Retrieved 8/13, 2007, from http://en.wikipedia.org/wiki/Probability_distribution [40].Mehmed, K. (2003). Data Mining: Concepts, Models, Methods, and Algorithm: John Wiley & Sons. [41].Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity of processing information. The Psychological Review, 101, 343-352. [42].Pantazopoulos, K. N., Tsoukalas, L. H., Bourbakis, N. G., Brun, M. J., & Houstis, E. N. (1998). Financial Prediction and Trading Strategies Using Neurofuzzy Approaches IEEE Trans. Systems, Man, and Cybernetics and Systems, 28(4), 520-531. [43].Parmar, D., Wu, T., & Blackhurst, J. (2007). MMR: An algorithm for clustering categorical data using Rough Set Theory. Data & Knowledge Engineering, 63, 879-893. [44].Pawlak, Z. (1982). Rough sets. Internat.J.Comput.Inform.Sci, 5 341-356. [45].Pawlak, Z. (1991). Rough sets : theoretical aspects of reasoning about data. Dordrecht ; ; Boston: Kluwer Academic Publishers. [46].Pawlak, Z. (1997). Rough set approach to knowledge-based decision support. European Journal of Operational Research 99, 48-57. [47].Pawlak, Z. (2002). Rough sets and intelligent data analysis Information Sciences, 147, 1-12. [48].Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough sets. . Association for Computing Machinery: Communications of the ACM, 38(11), 89-96. [49].Pawlak, Z., & Skoworn, A. (2007). Rudiments of rough sets. Information Science, 177, 3-27. [50].Pawlak, Z., & Slowinski, R. (1994). Rough set approach to multiattribute decision analysis. European Journal of Operational Research, 72, 443-459. [51].Refenes, A. P. N., & Holt, W. T. (2001). Forecasting Volatility with Neural Regression: A Contribution to Model Adequacy. IEEE Trans. Neural Networks, 12(4), 850-864. [52].Reuters. (1999). An Introduction to Technical Analysis. singapore: wiley. [53].Ross, T. J. (2004). Fuzzy logic with engineering applications (2nd ed.). Hoboken, NJ: John Wiley. [54].Saad, E. W., Prokhorov, D. V., & Wunsch, D. C. I. (1998). Comparative Study of Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks. IEEE Trans. Neural Networks, 9(6), 1456-1470. [55].Shieh, J. C. P. (1998.). Contemporary Investments-Analysis And Management. Taipei, Taiwan:: Best-Wise. [56].Slowinski, R. (1992). Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic Publishers. [57].Slowinski, R. (1995). Rough set approach to decision analysis. AI Expert Magazine, 10, 18-25. [58].Slowinski, R., & Stefanowski, J. (1994). New Approaches in Classification and Data Analysis. Berlin: Springer. [59].Song, Q., & Chissom, B. S. (1993a). Forecasting enrollments with fuzzy time series - Part Ⅰ. Fuzzy Sets and Systems, 54, 1-10. [60].Song, Q., & Chissom, B. S. (1993b). Fuzzy time series and its models. Fuzzy Sets and Systems, 54(3), 269-277. [61].Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time-series - Part Ⅱ. Fuzzy Sets and Systems, 62, 1-8. [62].Tanaka, H. (1987). Fuzzy data analysis by possibility linear models. Fuzzy Sets and Systems, 24, 363-375. [63].Tanaka, H., & Ishibuchi, H. (1992). Possibility regression analysis based on linear programming. Physica-Verlag, J. Kacprzyk, M. Fedrizzi, 47–60. [64].Tanaka, H., Uejima, S., & Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man, Cybernetics and Systems, 12(6), 903-907. [65].Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis : a linear matrix inequality approach. New York: Wiley. [66].Teoh, H. J., Chen, T. L., & Cheng, C. H. (2007). Frequency-Weighted Fuzzy Time-Series Based on Fibonacci Sequence for TAIEX Forecasting. Paper presented at the PAKDD 2007 Workshops, Nanjing. [67].Tsai, C. C., & Wu, S. J. (1999). A Study for Second-order Modeling of Fuzzy Time Series. Paper presented at the Proc. IEEE Fuzzy System Conf. [68].Tseng, F.-M., & Tzeng, G.-H. (2002). Fuzzy seasonal ARIMA model for forecasting. Fuzzy Sets and Systems, 126, 367-376. [69].Tseng, F. M., Tzeng, G. H., Yu, H. C., & Yuan, B. J. C. (2000). Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets and Systems, 118, 9-19. [70].Wakulicz-Deja, A., & Paszek, P. (1997). International Diagnose progressive encephalopathy applying the rough set approach. Journal of Medical Informatics, 46, 119-127. [71].Watada, J. (1992). Fuzzy time series analysis and forecasting of sales. Physica-Verlag, J. Kacprzyk, M. Fedrizzi, 211-227. [72].Wong, J.-T., & Chung, Y.-S. (2007). Rough set approach for accident chains exploration. Accident Analysis and Prevention, 39, 629-637. [73].Xu, B., Zhou, Y., & Lu, H. (2005). An improved accuracy measure for rough sets. Journal of Computer and System Sciences, 71 163-173. [74].Yeh, C.-A. (2004). New Fuzzy time series approaches for forecasting in expenditure of information project. Unpublished thesis, National Yunlin University of Science and Technology, Touliu, Yunlin. [75].Yu, H. K. (2005a). A refined fuzzy time series model for forecasting. Physica A, 346, 657-681. [76].Yu, H. K. (2005b). Weighted fuzzy time series models for TAIEX forecasting. Physica A, 349, 609-624. [77].Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353. [78].Zadeh, L. A. (1973a). The concept of a linguistic variable and its application to approximate reasoning. Berkeley: Memorandum ERL-M 411. [79].Zadeh, L. A. (1988). Fuzzy logic. IE/EE Computing Magazine, 21(4), 83-93. [80].Zadeh, L. A., Klir, G. J., & Yuan, B. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems : selected papers. Singapore ; River Edge, N.J: World Scientific. [81].Ziarko, W. (1994). Rough Sets, Fuzzy Sets and Knowledge Discovery. London: Springer. [82].Ziarko, W. P., & Yao, Y. (2001). Rough sets and current trends in computing, second international conference, RSCTC 2000, Banff, Canada, October 16-19, 2000 : revised papers. from Connect to Lecture Notes in Computer Science http://gateway.library.qut.edu.au/login?url=http://www.springerlink.com/link.asp?id=105633 [83].Zimmermann, H. J. (2001). Fuzzy set theory--and its applications (4th ed.). Dordrecht ; Boston: Kluwer Academic Publishers.
|