跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪憲志
研究生(外文):Shin-Chih Hung
論文名稱:氧化矽奈米線之光電特性研究
論文名稱(外文):The study on the optoelectronic properties of silica nanowires
指導教授:黃柏仁黃柏仁引用關係吳德和
指導教授(外文):Borh-Ran HuangTe-Ho Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:119
中文關鍵詞:催化劑氧化矽奈米線光電特性熱退火準分子雷射
外文關鍵詞:CatalystSilica nanowires ( Silica NWs )Optoe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以金粒子為催化劑,在熱化學氣相沉積系統中進行氧化矽奈米線的成長,利用掃描式電子顯微鏡 (SEM) 與穿透式電子顯微鏡 (TEM) 觀察奈米線的表面型態,以傅立葉轉換紅外線光譜 (FTIR) 分析氧化矽奈米線的鍵結結構及單位面積上奈米線數量的定量分析,以紫外-可見光光譜儀 (UV-Vis) 與光激發螢光光譜儀 (PL) 觀察氧化矽奈米線對光的吸收與反應情形,並以一平行板結構量測氧化矽奈米線於受光與未受光時電性變化,更近一步探討不同催化劑沉積時間與兩種不同後處理方式對奈米線光電特性之影響。
以催化劑沉積時間分別為10 sec、30 sec、60 sec進行奈米線成長,利用傅立葉轉換紅外線光譜 (FTIR) 分析奈米線可以得到代表Si-O-Si, O-Si-O和 Si-O鍵結位於波數460, 808, and 1084 cm-1的特徵吸收峰值,其相對吸收強度會隨著催化劑時間增加而變大。利用光激發螢光光譜儀 (PL) 觀察奈米線的光特性變化,最後以平板結構量測奈米線於未照光與照光下的電性變化情形,進一步探討催化劑前處理對氧化矽奈米線物性及電性的影響。可以觀察到催化劑沉積時間10 sec所成長的奈米線呈現較佳的光電特性。
將催化劑沉積時間30 sec,成長時間30分鐘的氧化矽奈米線分別於氮氣中進行熱退火後處理與利用準分子雷射於大氣中進行後處理,藉由傅立葉轉換紅外線光譜(FTIR)觀察氧化矽奈米線經後處理後在鍵結上的變化,並量測不同退火溫度及雷射功率後處理的氧化矽奈米線之光電特性,進而探討於氮氣中與大氣中不同後處方式對氧化矽奈米線光電特性之影響。可以發現,氧化矽奈米線經過 500℃熱退火後處理10分鐘後,會有較佳的光電特性,而經雷射入射功率100 mJ/cm2後處理後,會有較低的暗電流。
The silica nanowires (SiOx NWs) were synthesized on silicon substrate via a gold catalytic reaction under N2 atmosphere by the thermal chemical vapor deposition system. Morphology of SiOx NWs was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The FTIR absorption spectra were shown that the bonding and density of SiOx NWs. UV-Vis and photoluminescence (PL) spectra showed the absorption of SiOx NWs under light illumination. The optoelectronic properties of SiOx NWs were measured based on a planar structure. The effect on the optoelectronic properties by catalyst time and post-treatment of thermal annealing and excimer laser annealing were studied.
Prior to the SiOx NWs synthesis, different thickness of the nano- nucleation layers were prepared by the gold catalyst deposited times of 10 sec, 30 sec and 60 sec, respectively. It was found that growth density of the SiOx NWs increased as the catalyst time increased. The SiOx NWs could emit stable brightness light at 430 nm and 540 nm under excitation of 325 nm for the photoluminescence measurements. From the FTIR absorption spectra, the intensities of these three major absorption peaks at about 460, 808, and 1084 cm-1, indicating the Si-O-Si, O-Si-O and Si-O bonding, were increased as the catalyst time increased. It was found that the current was mostly increased under illumination for the SiOx NWs pretreated by catalyst time of 10 sec.
SiOx NWs with catalyst time of 30 sec were used for the study of post-treatments by the thermal annealing in N2 and excimer laser annealing in air. The FTIR absorption spectra were used to examine the change on the bonding of SiOx NWs by the post-treatment process. Optoelectronic properties of SiOx NWs were measured for the thermal annealing process and the excimer laser annealing process. It was found that the post-treatment process would strongly influenced the optoelectronic properties of SiOx NWs. It was indicated that current increase under illumination by the thermal annealing post-treatment was more than that by the excimer laser annealing post-treatment.
摘 要 i
Abstract ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
第二章 文獻回顧 3
2.1奈米材料之特色及效應 3
2.2奈米線成長機制 6
2.2.1 氣相-液相-固相 (Vapor-Liquid-Solid,VLS) 6
2.2.2 液相-液相-固相 (Liquid-Liquid-Solid,SLS) 8
2.2.3 固相-液相-固相 (Solid-Liquid-Solid,SLS) 10
2.2.4 氣相-固相 (Vapor-Solid,VS) 11
2.2.5 固相-固相 (Solid-Solid,SS) 12
2.2.6 氧化物輔助成長 (Oxide-assisted growth,OAG) 13
2.3奈米線成長方法 15
2.3.1 化學氣相沉積法 (CVD) 16
2.3.2 物理氣相沉積法 (PVD) 17
2.3.2.1 分子束磊晶法 (Molecular Beam Epitaxy,MBE) 19
2.3.2.2 雷射剝離法(Laser ablation) 20
2.3.3 其他Other 21
2.4光感測之原理與光感測器介紹 23
第三章 實驗方法及設備 30
3.1 實驗流程 30
3.1.1 催化劑前處理對氧化矽奈米線光電特性之影響 30
3.1.2 不同後處理對氧化矽奈米線光電特性之影響 31
3.2 奈米線之成長 32
3.2.1 基板製備 32
3.2.2 催化劑金粒子之沉積 33
3.2.3 氧化矽奈米線之成長 34
3.3氧化矽奈米線退火後處理 36
3.3.1 準分子雷射退火後處理 36
3.3.2 熱退火後處理 37
3.4 氧化矽奈米線物性分析 39
3.4.1 掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM) 39
3.4.2 高解析度穿透式電子顯微鏡 ( High Resolution Transmission Electron Microscope, HRTEM) 40
3.4.3 光激發螢光光譜儀 ( Photoluminescence Spectroscopy, PL) 41
3.4.4 傅立葉轉換紅外線光譜 ( Fourier Transform Infrared spectrometer, FTIR ) 42
3.5 氧化矽奈米線光電特性量測 44
3.5.1 高真空量測系統 44
3.5.2 光電特性量測流程 45
第四章 結果與討論 49
4.1 催化劑於製程中之變化 49
4.2 氧化矽奈米線光電特性 54
4.3 催化劑前處理對氧化矽奈米線光電特性之影響 59
4.4 熱退火後處理對氧化矽奈米線光電特性之影響 72
4.5 準分子雷射退火後處理對氧化矽奈米線光電特性之影響 83
第五章 結論與未來展望 98
參考文獻 100
[1] S.Iijima, Nature 354 (1991) 56
[2] Y. Li, G.W. Meng, L.D. Zhang, F. Phillip, Appl. Phys. Lett. 76 (2000) 2011.
[3] X. Chen, X.M. Sun, Y.D. Li, Inorg. Chem. 41 (2002) 4524.
[4] B.B. Lakshmi, C.J. Patrisi, C.M. Martin, Chem. Mater. 9 (1997) 2544.
[5] X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, Chem.Phys. Lett. 328 (2000) 5.
[6] Wang, Y.D. Li, J. Am. Chem. Soc. 124 (2002) 2884.
[7] X.S. Peng, Y.W.Wang, J. Zhang, X.F.Wang, L.X. Zhao, G.W. Meng, L.D. Zhang, Appl. Phys., A 74 (2001) 1.
[8] Tabib Azar et al. Appl. Phys. Lett. 87, 113102 (2005)
[9] Y. Sun and H. H. Wang, Appl. Phys. Lett. 90, 213107 (2007)
[10] Y. H. Ahn and J. Park, Appl. Phys. Lett. 91, 162102 (2007)
[11] D. K. Nagesha, M. A. Whitehead, J. L. Coffer, Adv Mater, 17, Issue 7, (2005), P921-924
[12] Susan Liao et al, Bioinspir. Biomim. 2, (2007), p.37。
[13] Y.B. Li et al., Carbon 37 (1999) 493 –497
[14] H. Miyashita et al., Superlattices and Microstructures 39 (2006) 67–74
[15] N. S. Lloyd, J.M. Bonar / Materials Science and Engineering B89 (2002)310–313
[16] T.M. Cheng et al. /Journal of Crystal Growth 150 (1995)
[17] 張立德,”奈米材料”,五南出版社。
[18] Y.Q. He et al. / Spectrochimica Acta Part A 61 (2005) 2861–2866
[19] J. R. Heath and F. K. LeGoues, Chem. Phys. Lett.,208 ,263 (1993)
[20] A. M. Morales and C. M. Lieber, Science,279 ,208 (1998)
[21] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E.Buhro, Science,270 ,1791 (1995)
[22] D. N. Davydov, J. Haruyama, D. Routkevitch, B. W. Statt, D. Eliis, M. Moskovits, and J. M. Xu, Phys. Rev. B,57 ,13550 (1998)
[23] R.S. Wagner and W.C. Ellis, Appl. Phys. Lett.,4 ,89 (1964)
[24] Y. Wu and P. Yang, J. Am. Chem. Soc.,123 ,3165 (2001)
[25] Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, and L.D. Zhang, J. Mater. Chem., 12, 651 (2002)
[26] D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S. Q. Feng, Appl. Phys. Lett.,73 ,3076 (1998)
[27] H.F. Zhang, C.M. Wang, E.C. Buck, and L.S. Wang, Nano Lett.,3 ,577 (2003)
[28] X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, and J.J. Du, Chem.Phys. Lett.,336 , 53 (2001)
[29]Y.J. Chen, J.B. Li, Y.S. Han, Q.M. Wei, and J.H. Dai, Appl. Phys. A,74 ,433(2002)
[30] J.C. Wang, C.Z. Zhan, and F.G. Li, Solid State Commun.,125 ,629 (2003)
[31] Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang, J. Am. Chem. Soc.,124 ,1817 (2002)
[32] S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, and L.D. Zhang, Solid StateCommun.,128 ,287 (2003)
[33] J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, and D. Golberg, Adv. Mater.,17 ,971 (2005)
[34] Y. Wu and P. Yang, J. Am. Chem. Soc.,123 ,3165 (2001)
[35] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E.Buhro, Science,270 , 1791 (1995)
[36] X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, Nano Lett.,3 , 93 (2003)
[37] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, and S.Q. Feng, Chem. Phys. Lett.,323 , 224 (2000)
[38] Y.J. Xing, Z.H. Xi, Z.Q. Xue, and D.P. Yu, Chin. Phys. Lett.,20 , 700 (2003)
[39] Y.J. Xing, Z.H. Xi, D.P. Yu, Q.L. Hang, H.F. Yan, S.Q. Feng, and Z.Q. Xue, Chin. Phys. Lett.,19 , 240 (2002)
[40] S.H. Sun, G.W. Meng, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, Y.X. Jin, and L.D. Zhang, Appl. Phys. A,76 , 999 (2003)
[41] B.T. Park and K. Yong, Nanotechnology,15 , S365 (2004)
[42] M. Paulose, O.K. Varghese, and C.A. Grimes, J. Nanosci. Nanotech.,3 , 341 (2003)
[43] Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, J. Cryst. Growth,233 , 803 (2001)
[44] L. Dai, X.L. Chen, T. Zhou, and B.Q. Hu, J. Phys.: Condens. Matter 14, 473 (2002)
[45] L. Dai, X.L. Chen, J.K. Jian, W.J. Wang, T. Zhou, and B.Q. Hu, Appl. Phys. A , 76 ,625 (2003)
[46] K.H. Lee, H.S. Yang, K.H. Baik, J. Bang, R.R. Vanfleet, and W. Sigmund, Chem. Phys. Lett.,383 , 380 (2004)
[47] H. Hamamura, H. Itoh, Y. Shimogaki, J. Aoyama, T. Yoshimi, J. Ueda, and H. Komiyama, Thin Solid Films,320 ,31 (1998)
[48] S.T. Lee, N. Wang, Y.F. Zhang, and Y.H. Tang, MRS Bull.,24 ,36 (1999)
[49] S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J.Mater. Res.,14 , 4503 (1999)
[50] N. Wang, Y.H. Tang, Y.F. Zhang, C.S .Lee, and S.T. Lee, Phys. Rev. B,58 ,R16024 (1998)
[51] S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bulletin, 24, 36, (1999)
[52] T.S. Chu, R.Q. Zhang, and H.F. Cheung, J. Phys. Chem. B,105 ,1705 (2001)
[53] R.Q. Zhang, Y. Lifshitz, and S.T. Lee, Adv. Mater.,15 ,635 (2003)
[54] X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett.,83 ,2241 (2003)
[55] Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Appl. Phys. Lett.,78 , 2214 (2001)
[56] G.W. Zhou, H. Li, H.P. Sun, D.P. Yu, Y.Q. Wang, X.J. Huang, L.Q. Chen, and Z. Zhang, Appl. Phys. Lett.,75 ,2447 (1999)
[57] D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science,299 ,1874 (2003)
[58] Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello, and S.T. Lee, Phys. Rev. B, 61,4518 (2000)
[59] W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Chem. Phys. Lett.,345 , 377 (2001)
[60] H.Y. Peng, X.T. Zhou, N. Wang, Y.F. Zheng, L.S. Liao, W.S. Shi, C.S. Lee, and S.T. Lee, Chem. Phys. Lett.,27 ,263 (2000)
[61] W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Adv. Mater.,13 ,591 (2001)
[62] W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, Appl. Phys. Lett.,78 , 3304 (2001)
[63] W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, and S.T. Lee, J. Vac. Sci. Technol. B, 19, 1115 (2001)
[64] J.Q. Hu, X.L. Ma, Z.Y. Xie, N.B. Wong, C.S. Lee, and S.T. Lee, Chem. Phys. Lett., 344,97 (2001)
[65] Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett.,75 , 2921 (1999)
[66] K.S. Shankar, A.K. Raychaudhuri / Materials Science and Engineering C 25 (2005) 738– 751
[67] Y.Y. Wong et al.,Science and Technology of Advanced Materials 6 (2005) 330–334
[68] M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status. (Springer, New York, 1996).
[69] 鄭世育,”台灣奈米科技”,工業技術研究院,p.94-97
[70] N. Fukata et al., Science and Technology of Advanced Materials 6 (2005) 628–632
[71] J. Qi et al., Chemical Physics Letters 372 (2003) 763–766
[72] Stephen P. Arnold et al., Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference on, 3(2005), 397-400
[73] 楊閔智等人,”以氫電漿乾式蝕刻法製作矽奈米線的方法”,奈米通訊,第十二卷第三期
[74] Rafael C. Gonzalex & Richard E. Woodso, 2002, Digital Image Processing / second Edition.
[75] S.O. Kasap, “Optoelectronics and Photonics Principles and Practices”
[76] 吳郎編著。感測器原理與應用。全華圖書股份有限公司。
[77] IUPAC Compendium of Chemical Terminology 2nd Edition (1997)
[78] X.G. Zheng et al., Applied Surface Science 253 (2006) 2264–2267
[79] 李明逵,”知識創新”, 33 期, 2003, 3月, pp.1 – 2。
[80] 吳坤憲,碩士論文”多孔矽/磊晶矽異質接面光電晶體之製作與特性研究”, 南台科技大學, 2005。
[81] S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, and G.T. Kim, Appl. Phys. Lett. 84, (2004)5022.
[82] Y. Gu, E.S. Kwak, J.L. Lensch, J.E. Allen, T.W. Odom, L.J. Lauhon, Appl. Phys. Lett. 87, (2005) pp.043111-1.
[83] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, (1998)3076.
[84] S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng., A 286, (2000) 16.
[85] Z. G. Bai, D. P. Yu, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, S. Q. Feng, J. Xu, and L. P. You, Mater. Sci. Eng., B 72, (2000)117.
[86] N. Ozaki, Y. Ohno, and S. Takeda, Mater. Res. Soc. Symp. Proc. 588, (2000) 99.
[87] 謝嘉民等編著,”奈米通訊”,第十二卷第二期,財團法人國家實驗研究院奈米元件實驗室出版委員會,台灣 (2005)
[88] M.S. Hu, H.L. Chen, C.H. Shen, L.S. Hong, B.R. Huang, K.H. Chen, L.C. Chen
, Nature, 5, 102(2006)
[89] 卓恩宗等人, ”奈米通訊” ,11,5 (2004).
[90] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, Chem. Phys. Lett.,369 , 220 (2003)
[91]J.R. Martı´nez, F. Ruiz, Y. V. Vorobiev, F. Pe´rez-Robles, and J. Gonza´lez-Herna´ndez, J. Chem. Phys.,109 , 17 (1998).
[92]Quanli Hu , Hiroshi Suzuki, Hong Gao, Hiroshi Araki, Wen Yang, Tetsuji Noda, Chem. Phys. Lett., 378, 299 (2003)
[93]L.S. Liao, X.M. Bao, X.Q. Zheng, N.S. Li, N.B. Min, Appl. Phys. Lett. 68 (1996) 850.
[94] D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, Appl. Phys. Lett. 73 (1998) 3076–3078.
[95] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohiki, K. Nagasawa, Y. Hama, Phys. Rev. B 45 (1992) 586.
[96] S. Ozaki et al., Phys. Stat. Sol. (a) 202, No. 7, 1325–1335 (2005)
[97] T. Shimizu-Iwayama et al., Nucl. Instr. and Meth. in Phys. Res. B 230 (2005) 203–209
[98] Hua et al., Langmuir, Vol. 22, No. 9, (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top