跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂宗興
研究生(外文):Tsung-Hsing Lu
論文名稱:雙通道和複合通道高電子遷移率電晶體之模擬分析
論文名稱(外文):Simulation and Analysis for Dual-channel and Composite-channel High Electron Mobility Transistors
指導教授:張彥華
指導教授(外文):Yang-Hua Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:轉移電導複合通道雙通道MEDICI高電子遷移率電晶體
外文關鍵詞:HEMTMEDICITransconductanceComposite-channelDual-channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著微波技術的日趨重要,對主動元件的要求愈來愈高,而高電子遷移率電晶體於三五族半導體中是一個很重要的元件,主要應用在軍事和商業通訊的毫米波和微波頻率上。

本論文使用半導體元件模擬軟體MEDICI針對雙通道高電子遷移率電晶體與複合通道高電子遷移率電晶體兩種結構進行模擬與分析。本論文改變元件結構中之能障層、阻隔層與載子供應層之厚度與摻雜濃度,並且比較元件本身的電性特性有何改變,並於結論中提出各層結構對於兩種元件電性之影響。藉由MEDICI模擬雙通道與複合通道元件於不同結構的電性,經由模擬結果之比較,可以得知何種結構改變會獲得最佳的元件特性,增加直流操作範圍、提升汲極電流與轉移電導特性。
High electron mobility transistor (HEMT) device is one of the most important semiconductor devices for military and commercial communication applications at millimeter-wave frequencies.

In this thesis, dual-channel HEMT and composite HEMT structures are studied using the two-dimension device simulation program MEDICI. Electrical characteristics with different thickness of the barrier layers and spacer layers, and also with different concentration of the delta-doping layer, are simulated and compared. From the simulation result, the optimized layer structures for higher drain current and transconductance are obtained.
摘要..............................i
ABSTRACT..............................ii
誌謝..............................iii
目錄..............................iv
表目錄..............................vi
圖目錄..............................vii
第一章 緒論..............................1
第二章 半導體元件模擬軟體-MEDICI之介紹..............................3
2.1 前言..............................3
2.2 TMA MEDICI 內建電流計算及模擬..............................4
2.2.1 物理模型..............................4
2.2.2 基本的電流電壓模型..............................5
2.2.3 復合模型(recombination model)..............................7
2.2.4 遷移率模型(mobility model)..............................8
2.2.5 邊界條件(Boundary Conditions)..............................9
2.2.6 數值方法(Numerical Method)..............................10
2.3 材料之參數值..............................12
第三章 高電子遷移率電晶體之介紹..............................13
3.1 前言..............................13
3.2 高電子遷移率電晶體..............................13
3.2.1 調變式摻雜之單異質接面高電子遷移率電晶體..............................17
3.2.2 Delta-doping之單異質接面高電子遷移率電晶體..............................18
3.2.3 調變式摻雜之雙異質接面高電子遷移率電晶體..............................19
3.2.4 Delta-doping之雙異質接面高電子遷移率電晶體..............................20
3.3 總結..............................21
第四章 雙通道與複合通道高電子遷移率電晶體之模擬分析..............................22
4.1 前言..............................22
4.2 雙通道高電子遷移率電晶體..............................22
4.2.1 單通道元件結構..............................23
4.2.2 模擬結果..............................24
4.2.3 雙通道元件結構..............................28
4.2.4 模擬結果..............................30
4.3 複合通道高電子遷移率電晶體..............................43
4.3.1 元件結構..............................43
4.3.2 模擬結果..............................45
4.4 模擬結果總結..............................57
第五章 結論..............................58
參考文獻..............................59
自傳..............................62
[1]M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, P. H. Liu, G. S. Dow and B. R. Allen, “A 94-GHz Monolithic Balanced Power Amplifier Using 0.1μm Gate GaAs-Based HEMT MMIC Production Process Technology,” IEEE Microwave and Guided Wave Letter, Vol. 5, No. 1, pp. 12-14, 1995.
[2]Y. Itoh, Y. Horrie, K. Nakahara, N. Yoshida, T. Katoh, and T. Takagi, “A V-band, High Gain, Low Noise, Monolithic PHEMT Amplifier Mounted on a Small Hermetically Sealed Package,” IEEE Microwave and Guided Wave Letter, Vol. 5, No. 2, pp. 48-49, 1995.
[3]D. Xu, T. Suemitsu, J. Osaka, Y. Umeda, Y. Yamane, Y. Ishii, T. Ishii, and T. Tamamura, “Depletion- and Enhancement-mode Modulation-Doped Field-Effect Transistors for Ultrahigh-Speed Applications: An Electrochemical Fabrication Technology,” IEEE Transactions on Electron Devices, Vol. 47, pp. 33-43, 2000.
[4]MEDICI Manual, Technology Modeling Associates, Inc., Palo Alto, CA, 1996.
[5]J. J. Barnes, R. J. Lomax, “Finite-Element Simulation of GaAs MESFET’s with Lateral Doping Profiles and Submicron Gates,” IEEE Transactions on Electron Devices, Vol. 23, No. 9, September 1976.
[6]E. F. Schubert “Doping in III-V Semiconductors,” AT&T, 1993.
[7]J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” Cambridge University Press, 2003.

[8]N. G. Tao, H. G. Liu, C. R. Bolognesi, “Impact of surface state modeling on the characteristics of InP/GaAsSb/InP DHBTs,” Solid-State Electronics, Vol. 51, pp. 995-1001, 2007.
[9]R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiexmann, Applied Physic, Vol. 33, pp. 665-667, 1978.
[10]T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Applied Physic, Vol. 19 L225-L227, 1980.
[11]S. M. Sze “High-Speed Semiconductor Device,” AT&T, 1990.
[12]C. Hamaguchi, K. Miyatsuji , H. Hihara, “A proposal of single Quantum well transistor (SQWT) -Self-consistent calculations of 2D Electrons. in a quantum well with external voltage,” Japan Journal of Applied Physics, Part 2: Letters, Vol. 23, Issue: 3, pp. 132-134, March 1984.
[13]M. Tomizawa, T. Furuta, K. Yokoyama, A. Yoshii, “Modeling for electron transport in AlGaAs/GaAs/AlGaAs double-heterojunction structures,” IEEE Transactions on Electron Devices, Vol. 36, Issue: 11, Part 2, pp. 2380-2385, November 1989.
[14]N. H. Sheng, C. P. Lee, R. T. Chen, D .L. Miller, S. J. Lee, “Multiple-channel GaAs/AlGaAs high electron mobility transistors,” IEEE Transactions on Electron Device, Vol. 6, Issue: 6, pp. 307-310, January 1985.
[15]R. Gupta, S. K. Aggarwal, M. Gupta, R. S. Gupta, “Analytical non-linear charge control model for InAlAs/InGaAs/InAlAs double heterostructure high electron mobility transistor (DH-HEMT),” Solid-State Electronics, Vol. 49, Issue: 2, pp. 167-174, February 2005.
[16]D. Liu, M. Hudait, Y. Lin, H. Kim, S. A. Ringel, W. Lu, “Gate length scaling study of InAlAs/InGaAs/InAsP composite channel HEMTs,” Solid-State Electrons, Vol. 51, pp. 838-841, 2007.
[17]T. Enoki, K. Arai, A. Kohzen, Y. Ishii, “InGaAs/InP double channel HEMT on InP,” Proceedings of 4th InP related materials conference, pp.14-17, 1992.
[18]K. Ouchi, T. Mishima, M. Kudo, O. Ohtal, “Gas-source molecular beam epitaxy growth of metamorphic InP/InAlAs/InGaAs/InAsP high-electron-mobility structures on GaAs substrates,” Japan Journal of Applied Physics, Vol. 41, pp. 1004-1007, 2002.
[19]D. Liu, M. Hudait, Y. Lin, H. Kim, S. A. Ringel, W. Lu, “InGaAs/InAsP composite channel high electron mobility transistors,” Electrons Letters, Vol. 42, pp. 307-309, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top