|
[1]M. Aust, H. Wang, M. Biedenbender, R. Lai, D. C. Streit, P. H. Liu, G. S. Dow and B. R. Allen, “A 94-GHz Monolithic Balanced Power Amplifier Using 0.1μm Gate GaAs-Based HEMT MMIC Production Process Technology,” IEEE Microwave and Guided Wave Letter, Vol. 5, No. 1, pp. 12-14, 1995. [2]Y. Itoh, Y. Horrie, K. Nakahara, N. Yoshida, T. Katoh, and T. Takagi, “A V-band, High Gain, Low Noise, Monolithic PHEMT Amplifier Mounted on a Small Hermetically Sealed Package,” IEEE Microwave and Guided Wave Letter, Vol. 5, No. 2, pp. 48-49, 1995. [3]D. Xu, T. Suemitsu, J. Osaka, Y. Umeda, Y. Yamane, Y. Ishii, T. Ishii, and T. Tamamura, “Depletion- and Enhancement-mode Modulation-Doped Field-Effect Transistors for Ultrahigh-Speed Applications: An Electrochemical Fabrication Technology,” IEEE Transactions on Electron Devices, Vol. 47, pp. 33-43, 2000. [4]MEDICI Manual, Technology Modeling Associates, Inc., Palo Alto, CA, 1996. [5]J. J. Barnes, R. J. Lomax, “Finite-Element Simulation of GaAs MESFET’s with Lateral Doping Profiles and Submicron Gates,” IEEE Transactions on Electron Devices, Vol. 23, No. 9, September 1976. [6]E. F. Schubert “Doping in III-V Semiconductors,” AT&T, 1993. [7]J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” Cambridge University Press, 2003.
[8]N. G. Tao, H. G. Liu, C. R. Bolognesi, “Impact of surface state modeling on the characteristics of InP/GaAsSb/InP DHBTs,” Solid-State Electronics, Vol. 51, pp. 995-1001, 2007. [9]R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiexmann, Applied Physic, Vol. 33, pp. 665-667, 1978. [10]T. Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Applied Physic, Vol. 19 L225-L227, 1980. [11]S. M. Sze “High-Speed Semiconductor Device,” AT&T, 1990. [12]C. Hamaguchi, K. Miyatsuji , H. Hihara, “A proposal of single Quantum well transistor (SQWT) -Self-consistent calculations of 2D Electrons. in a quantum well with external voltage,” Japan Journal of Applied Physics, Part 2: Letters, Vol. 23, Issue: 3, pp. 132-134, March 1984. [13]M. Tomizawa, T. Furuta, K. Yokoyama, A. Yoshii, “Modeling for electron transport in AlGaAs/GaAs/AlGaAs double-heterojunction structures,” IEEE Transactions on Electron Devices, Vol. 36, Issue: 11, Part 2, pp. 2380-2385, November 1989. [14]N. H. Sheng, C. P. Lee, R. T. Chen, D .L. Miller, S. J. Lee, “Multiple-channel GaAs/AlGaAs high electron mobility transistors,” IEEE Transactions on Electron Device, Vol. 6, Issue: 6, pp. 307-310, January 1985. [15]R. Gupta, S. K. Aggarwal, M. Gupta, R. S. Gupta, “Analytical non-linear charge control model for InAlAs/InGaAs/InAlAs double heterostructure high electron mobility transistor (DH-HEMT),” Solid-State Electronics, Vol. 49, Issue: 2, pp. 167-174, February 2005. [16]D. Liu, M. Hudait, Y. Lin, H. Kim, S. A. Ringel, W. Lu, “Gate length scaling study of InAlAs/InGaAs/InAsP composite channel HEMTs,” Solid-State Electrons, Vol. 51, pp. 838-841, 2007. [17]T. Enoki, K. Arai, A. Kohzen, Y. Ishii, “InGaAs/InP double channel HEMT on InP,” Proceedings of 4th InP related materials conference, pp.14-17, 1992. [18]K. Ouchi, T. Mishima, M. Kudo, O. Ohtal, “Gas-source molecular beam epitaxy growth of metamorphic InP/InAlAs/InGaAs/InAsP high-electron-mobility structures on GaAs substrates,” Japan Journal of Applied Physics, Vol. 41, pp. 1004-1007, 2002. [19]D. Liu, M. Hudait, Y. Lin, H. Kim, S. A. Ringel, W. Lu, “InGaAs/InAsP composite channel high electron mobility transistors,” Electrons Letters, Vol. 42, pp. 307-309, 2006.
|