跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃雅屏
研究生(外文):Ya-Ping Huang
論文名稱:鈉離子感測器之研製及穩定度分析
論文名稱(外文):Fabrication and Stability Analysis for the Sodium Ion Sensor
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Jung-Chuan Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:102
中文關鍵詞:二氧化釕/矽基板包埋方法分離式延伸型閘極場效電晶體非理想效應鈉離子選擇電極
外文關鍵詞:Non-ideal effectEntrapment methodSeparative extended gate field effect transistorRuthenium dioxide/silicon substrateSodium ion-selective electrode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
吾人使用分離式延伸型閘極場效電晶體(Separative Extended Gate Field Effect Transistor, SEGFET)及包埋方法製作鈉離子選擇電極。其優點為易封裝,平常易維護及穩定性佳。SEGFET係使用二氧化釕基底及感測膜之結構量測鈉離子溶液。感測膜製作係使用poly(vinyl choride)(PVC)混合鈉離子選擇物(B12C4)。鈉離子選擇電極於量測1M至10-5 M之氯化鈉溶液中,感測度為57.26 mV/pNa、線性度為0.996、響應時間為13秒。此外,吾人量測鈉離子選擇電極之非理想效應及干擾效應,遲滯電壓寬度為1.62mV、工作溫度介於25℃和45℃之間。
We employed the separative extended gate field effect transistor (SEGFET) and the entrapment method to fabricate the sodium ion-selective electrode. The advantages are easy package, easy preservation, and better stability. The SEGFET based on the structure of the ruthenium oxide/silicon substrate (RuO2/silicon substrate) and sensing membranes for measuring the sodium ion solutions. The sensing membranes have been fabricated for poly(vinyl choride)(PVC) matrix the sodium ion ionophores (B12C4). The sensitivity of sodium ion-selective electrode is 57.26 mV/pNa, and the linear regression is 0.996 between 1M and 10-5 M sodium ion concentrations. It has rapid response time which is 13 seconds in 10-1M NaCl solution. In addition, we measured the non-ideal effect and interference of the sodium ion-selective electrode. The hysteresis width is the voltage difference between the start point and end point that is 1.62 mV. The working temperature is between 25℃ and 45℃.
Chinese abstract---------------------------------------------------------------------- I
English abstract---------------------------------------------------------------------- II
Acknowledgement ---------------------------------------------------------------------- III
Contents ---------------------------------------------------------------------- IV
List of tables ---------------------------------------------------------------------- VI
List of figures ---------------------------------------------------------------------- VII
Chapter 1 Introduction---------------------------------------------------------- 1
1.1 Ion Sensitive Field Effect Transistor, ISFET-------------------------- 2
1.2 Extended gate ion sensitive field effect transistor, EGISFET---------- 3
1.3 Separative extended gate field effect transistor, SEGFET-------------- 5

Chapter 2 Theory Description --------------------------------------------------- 14
2.1 Sensing theory-------------------------------------------------------- 14
2.2 Selectivity coefficients of the ion selective electrodes ------------- 15
2.3 Site-binding model---------------------------------------------------- 17

Chapter 3 Experiments----------------------------------------------------------- 24 3.1 Materials and reagents------------------------------------------------ 24
3.2 Preparation of the ion sensing device--------------------------------- 25
3.2.1 Deposition and characteristics of ruthenium oxide thin film--- 25
3.2.2 Device package------------------------------------------------ 26
3.3 Preparation of the sensing membrane----------------------------------- 26
3.4 Instruments----------------------------------------------------------- 27

Chapter 4 Results and Discussions----------------------------------------------- 36
4.1 Characteristics of hydrogen ion sensing device------------------------ 36
4.2 Characteristics of chloride ion sensing device------------------------ 36
4.2.1 Sensitivity in standard pH solution -------------------------- 36
4.2.2 Sensitivity in NaCl solution --------------------------------- 37
4.2.3 Hysteresis effect -------------------------------------------- 37
4.2.4 Temperature effect ------------------------------------------- 38
4.2.5 Comparison study in different substrates---------------------- 38
4.2.6 Potential measurements in Cyclic Voltammetry (CV)------------- 39
4.3 Selectivity coefficient----------------------------------------------- 40
4.4 Polyethylene terephthalate (PET) substrate---------------------------- 41
4.5 Miniaturized conductive polymer reference electrode[48]--------------- 42

Chapter 5 Conclusion------------------------------------------------------------ 61

References ---------------------------------------------------------------------- 63

Appendix 口試問題答辯---------------------------------------------------------- 72
中文簡介-------------------------------------------------------------- 77
個人簡歷-------------------------------------------------------------- 86

List of tables

Table 3.1 Sputtering parameters of ruthenium oxide thin film/p-type silicon substrate.----------------------------- 34
Table 3.2 Preparation methods of the testing solutions.------------------------------------------------------------ 35
Table 4.1 Comparison between our study and other research literatures.--------------------------------------------- 53
Table 4.2 Sensitivity of the RuO2/p-Si device in different temperatures.------------------------------------------- 54
Table 4.3 MPM and FIM selectivity of primary Na+ against interfering K+, Ca2+ and Mg 2+ ions with different types. 55
Table 4.4 Specifications of the sensing device for sodium ion.----------------------------------------------------- 56

List of figures

Fig. 1.1 Illustration of the DWG-8025A [2].---------------------------------------------------- 8
Fig. 1.2 Illustration of the HT-9301 [3].------------------------------------------------------ 9
Fig. 1.3 Illustration of the DGN-9507 [4].----------------------------------------------------- 10
Fig. 1.4 Structure of the ISFET.--------------------------------------------------------------- 11
Fig. 1.5 Structure of the EGISFET.------------------------------------------------------------- 12
Fig. 1.6 Structure of the SEGFET.-------------------------------------------------------------- 13
Fig. 2.1 Sensing mechanism Illustration of the sodium ion electrode based on RuO2/silicon substrate. (HDL means Helmoltz double layer)----21
Fig. 2.2 Principle of the determination of selectivity coefficients by the MPM [16].----------- 22
Fig. 2.3 Diagram of site-binding model for ISFET [18].----------------------------------------- 23
Fig. 3.1 Chemical structure of the B12C4 compounds [20].--------------------------------------- 29
Fig. 3.2 Cross-section of ion sensing device.-------------------------------------------------- 30
Fig. 3.3 V-T measurement system with LT1167 instrumentation amplifier.------------------------- 31
Fig. 3.4 IDS-VG measurement system.------------------------------------------------------------ 32
Fig. 3.5 Illustration of the Cyclic Voltammetry.----------------------------------------------- 33
Fig. 4.1 I-V curves of the RuO2/silicon electrode.--------------------------------------------- 43
Fig. 4.2 Sensitivity of the RuO2/silicon electrode.-------------------------------------------- 44
Fig. 4.3 I-V curves of the sodium electrode from pH1 to pH13.---------------------------------- 45
Fig. 4.4 I-V curves and sensitivity of the RuO2/p-Si sensing device.--------------------------- 46
Fig. 4.5 Hysteresis width of the sodium sensing device.---------------------------------------- 47
Fig. 4.6 Definition and determination of response time t (ΔE/Δt) [36].----------------------- 48
Fig. 4.7 Response time of RuO2/p-Si SEGFET device.--------------------------------------------- 49
Fig. 4.8 Results of the cyclic voltammetry (CV) curves indicate different sodium ion concentrations in 0.1M ~ 10-3M sodium chloride solutions, which have oxidation peak at 0.55V.---------------------------------------- 50
Fig. 4.9 Sensitivity of the cyclic voltammetry (CV) curves in the sodium chloride solutions.--- 51
Fig. 4.10 Sensitivity was calculated by using the current-voltage (I-V) curves in the different sodium chloride solutions.-------------------------------------------------------------------------------------------- 52
Fig. 4.11 Sensitivity of the RuO2/PET sensing device.------------------------------------------- 57
Fig. 4.12 I-V curves of sensitivity of the RuO2/PET sensing device.----------------------------- 58
Fig. 4.13 Sodium ion sensitivity of the RuO2/PET sensing device.-------------------------------- 59
Fig. 4.14 Sodium ion sensitivity, which is measured by combining the miniaturized conductive polymer reference electrode and sodium ion selective electrode.--------------------------------------------------------- 60
[1] B. Lengyel and E. Blum, “The behaviour of the glass electrode in connection with its chemical composition”, Transactions of the Faraday Society, Vol. 30, pp. 461-471, 1934.
[2] E. W. Moore, D. W. Wilson, “The determination of sodium in body fluids by the glass electrodes”, The Journal of Clinical Investigation, Vol. 42, pp. 293–304, 1963.
[3] http://www.zgkx17.com/detail.asp?id=4480
[4] http://www.science17.com/pr/3648.html
[5] http://www.cdbsd.net/cdbsd_Product_2655761.html
[6]P. Bergveld and A. Sibbald, “Analytical and Biomedical Applications of ISFETs”, Elsevier, Amsterdam, 1988.
[7] R.E.G. van Hal, J.C.T. Eijkel, P. Bergveld, “A general model to describe the electrostatic potential at electrolyte oxide interfaces”, Advances in colloid and interface science, Vol.69, pp. 31-62, 1996.
[8]P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions Biomolecular Engineering, Vol. 70, p. BME-17, 1970.
[9] D. E. Yates, S. Levine and T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Sot. Faraday Trans. I, 70 (1974) 1807-1818.
[10]L. Bousse, N.F. De Rooij and P. Bergveld, “Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface” IEEE Transactions on Electron Devices, Vol. 30, pp.1263-1270, 1983.
[11] J. Van Der Spiegel, I. Lauks, P. Chan, D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators B, Vol. 4, pp. 291-298, 1983.
[12] J. C. Chou, J. L. Chiang and C. L. Wu, “pH and procaine sensing characteristics of extended-gate field-effect transistor based on indium tin oxide glass”, Japanese Journal of Applied Physics, Vol. 44, No. 7A, pp. 4838–4842, 2005.
[13] J. C. Chou, Y. S. Li, J. L. “Chiang, Simulation of Ta2O5-gate ISFET temperature characteristics”, Sensors and Actuators B, Vol. 71, pp. 73-76, 2000.
[14]Y. L. Chin, J. C. Chou, T. P. Sun, H. K. Liao, W. Y. Chung, S. K. Shiung, “A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process”, Sensors and Actuators B, Vol. 75, pp. 36-42, 2001.
[15]J. C. Chou, Y. F. Wang, “Preparation of the SnO2 gate pH-sensitive ion sensitive field-effect transistor by the sol–gel technology and its temperature effect”, The Japan Society of Applied Physics, Vol. 41, pp. 5941–5944, 2002.
[16]J. C. Chou, P. K. Kwan and Z. J. Chen, “SnO2 Separative structure extended gate pH-ion sensitive field effect transistor by the sol–gel technology and the readout circuit developed by source follower”, The Japan Society of Applied Physics, Vol. 42, pp. 6790–6794, 2003.
[17]J. C. Chou, C. Y. Lin, December 3-5, 2007, “Sensing properties and stability analysis of miniaturized dual-mode uric acid biosensor based on TiO2 extended gate field effect transistor”, Proceedings of The Technical Digest of The 7th East Asia Conference on Chemical Sensors (EACCS-7), Hotel Novotel Clarke Quay, Nanyang Technological University, Singapore, PI-121, p. 39.
[18] J. C. Chou, H. W. Tseng, May 11-14, 2008, “Study on thermal annealing and sensing characteristics of titanium dioxide separative extended gate field effect transistor by using the R.F. sputtering method”, Proceedings of The 6th Asian Conference on Electrochemistry (ACEC2008), Chientan Overseas Youth Activity Center, Taipei, Taiwan, R.O.C., 2 pages (disc), (Oral).
[19] L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate”, Sensors and Actuators B, Vol. 71, pp. 106-111, 2000.
[20] J. L. Chiang, “Study on the pH-sensing characteristics of ISFET with aluminum nitride membrane”, Ph. D. dissertation, Department of Electrical Engineering, National Sun Yat-Sen University, pp. 22-23, 2002.
[21] I. K. Kao, “Study on multi ion sensor of extended gate field effect transistor”, Master Thesis, Institute of Electronics Engineering Chung Yuan Christian University, 2003.
[22] J. F. Cheng, J. C. Chou, T. P. Sun, and S. K. Hsiung, “All-solid-state separated potassium electrode based on SnO2/ITO glass”, Journal of the Electrochemical Society, Vol. 154, pp. J369-J374, 2007.
[23] K. Tohda, D. Dragoe, M. Shibata, and Y. Umezawa, “Studies on the matched potential method for determining the selectivity coefficients of ion-selective electrodes based on Neutral ionophores: experimental and theoretical verification”, Analytical Sciences, Vol. 17, pp. 733-743, 2001.
[24]C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Transactions on Electron Devices, Vol.ED-33, pp.8-18, 1986.
[25]Yu Sheng Chen, Development of the multi-function measurement system and interface for the biosensor, Master Thesis, Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, 2006.
[26]R. E. G. Van Hall, J.C.T. Eijkel, P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters”, Sensors and Actuators B, Vol. 24-25, pp. 201-205, 1995.
[27]D. Ogo´nczyk, Ł. Tymecki, I. W. zkiewicz, R. Koncki, S. Głab, “Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions”, Sensors and Actuators B, Vol. 106, pp.450–454, 2005.
[28]P. L. Chou, “Fabrication of ion sensing device based on ruthenium oxide thin film and analysis for characteristics of sensing system”, Master Thesis, Graduate School of Optoelectronics, National Yunlin University of Science and Technology, 2007.
[29]S. I. Liu, Study on the preparation, measurement and readout circuit of the bio-medicine sensor by the sputtering of ruthenium, Master Thesis, Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, 2004.
[30]S. H. Chen, Study on ruthenium oxide and enzymatically modified electrode with penicillin for amperometric and potentialmetric measurements, Master Thesis, Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, 2006.
[31]Y. H. Liao, J. C. Chou*, December 3-5, 2007, “Procaine and berberine drug sensors based on ruthenium dioxide thin films using sputtering method”, Proceedings of The Technical Digest of The 7th East Asia Conference on Chemical Sensors (EACCS-7), Hotel Novotel Clarke Quay, Nanyang Technological University, Singapore, PI-119, P.38.
[32]E. L. Huang, S. H. Yang, J. C. Chou, November 30 – December 1, 2007, “A miniaturized ascorbic acid array sensor based on screen printing technology”, Proceedings of The 2007 International Electron Devices and Materials Symposia (IEDMS), National Tsing Hua University, Hsinchu, Taiwan, R.O.C., PD-18, 4 pages (disk).
[33]J. C. Chou, Y. P. Huang, December 3-5, 2007, “Fabrication and stability analysis for the sodium ion sensor”, Proceedings of The Technical Digest of The 7th East Asia Conference on Chemical Sensors (EACCS-7), Hotel Novotel Clarke Quay, Nanyang Technological University, Singapore, PI-133, p. 43.
[34]J. C. Chou, Y. P. Huang, May 11-14, 2008, “The research of sodium ion measurement by the potentiometric and amperometric methodes”, Proceedings of The 6th Asian Conference on Electrochemistry (ACEC2008), Chientan Overseas Youth Activity Center, Taipei, Taiwan, R.O.C., 2 pages (disc), (Oral).
[35]周榮泉、周佩蘭、鄭筱瑄,氯離子感測器及其製造方法以及包含此感測器的感測系統,中華民國公開號200742852,公開日:2007/11/16。榮獲2007年台北國際發明暨技術交易展-發明競賽銀牌獎。
[36]L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, “Study on separative structure of EnFET to detect acetylcholine,” Sensors and Actuators B, Vol. 71, pp.68-72, 2000.
[37]Li Te Yin. J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFFET,” Materials Chemistry and Physics, Vol. 70, pp. 12-16, 2001.
[38]J. C. Chen, J. C. Chou, T. P. Sun, S. K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sensors and Actuators B, Vol.91, pp. 180-186, 2003.
[39]W. S. Wang, “The study of polymerization and electrochemical properties of some N-hydroxy alkyl pyrroles”, Master Thesis, Graduate School of Chemical Engineering, Chung Yuan University, 2002.
[40]J. C. Chou, Y. P. Huang, “Study on the sodium ions measurement based on extended gate field effect transistor”, Proceedings of The 2005 Cross-Strait University President Symposium & Conference on Science and Technology, pp. 103-106, 2005.
[41]P. Shuk, M. Greenblatt, K.V. Ramanujachary, “Sodium ion sensitive electrode based on a molybdenum oxide bronze”, Solid State Ionics, Vol. 91, pp. 233-238, 1996.
[42]A. Michalska, A. Hulanicki, and A. Lewenstam, “All-solid-state potentiometric sensors for potassium and sodium based on poly(pyrrole) solid contact”, Microchemical Jouranl, Vol. 57, pp. 59-64, 1997.
[43]M. Y. Nemilova, N. V. Shvedene, V. V. Kovalev, E. A. shokova, “Ion-selective electrodes based on adamantylcalix [4,8] arenas for the determination of alkali cations”, J. Anal. Chem, Vol. 58, pp. 375-379, 2003.
[44]Y. Qin, S. Peper, E. Bakker, “Plasticizer-free polymer membrane ion-selective electrodes containing a methacrylic copolymer matrix”, Electroanalysis Vol. 14, pp. 1375-1381, 2001.
[45]S. Chandra, H. Lang, “A new sodium ion selective electrode based on a novel silacrown ehter”, Sensors and actuators B, Vol.114, pp. 849-854, 2006.
[46]J. S. Lin, “Simulation and study of the hysteresis, drift and temperature effect of the pH-ISFET based on hydrogenated amorphous silicon and amorphous tungsten oxide”, Master Thesis, Institute of Electronics and Information Engineering, National Yunlin University of Science and Technology , Taiwan, R.O.C., 1999
[47]L. Bousse, S. Mostarshed, B. van der Schoot, N. F. de Rooij, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sensors and Actuators B, Vol. 17, pp. 157-164, 1994.
[48]C. C. Chen, “Fabrication and application of the miniaturized conductive polymer reference electrode”, Graduate School of Optoelectronics, National Yunlin University of Science and Technology, 2008.
[49]P. B. Richard, L. Erno, “Recommendations for nomenclature of ion-selective electrodes,” Pure and Applied Chemistry, Vol.66, No.12, pp.2527-2536, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top