跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘居清
研究生(外文):Chu-Ching Pan
論文名稱:企業市場改善個人化推薦系統以增進顧客回應性之研究
論文名稱(外文):Enhancing Responsiveness to Customers Through Improving Personal Recommendation System In Business Market
指導教授:莊煥銘莊煥銘引用關係
指導教授(外文):Huan-Ming Chuang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:64
中文關鍵詞:個人化推薦顧客回應性關係行銷協同過濾法產品分類學
外文關鍵詞:collaborative filter (CF)personal recommendationproduct taxonomyrelationship marketingresponsiveness to customers
相關次數:
  • 被引用被引用:3
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:1
網路與電子商務的急遽成長帶來了資訊的超載,顧客得到了網路購買在時間空間上的方便,卻也同時得到了網路購買在商品資訊方面過多而無所適從的狀況;在企業市場中,少量的消費者帶來龐大的購買力,金字塔頂端的顧客對於企業的營運佔有舉足輕重的地位,為了要使顧客有備受重視的感覺,不僅要提供優質的產品與服務,更要能夠深入瞭解顧客,提供個人化的行銷策略,藉以提昇顧客忠誠度,加強關係行銷;因此就出現了許多個人化推薦系統與方法,包括了傳統的協同過濾法、RFM導向之協同過濾法,以及RFM導向之關聯法則探勘法,而其中,協同過濾法為一同時具備效果與效率,並且獲得廣泛使用之推薦方法,但其也擁有兩大缺點與限制,即為稀疏與規模延伸性的問題;本研究提出一個混合式的個人化推薦方法,基於協同過濾法的優點,再加入調整後之產品分類學,將爆炸的資訊和產品化繁為簡,透過真實資料集的實驗以及與關聯法則探勘法和傳統RFM導向之協同過濾法之比較,本研究提供之方法確實擁有更好的推薦品質。
Rapid growth of Internet and the e-commerce environment caused information overload. Customers receive the benefit of e-commerce but they also undertake the shortcoming it has – the explosion of information. Although there are only few customers in business market, they bring enormous purchase ability. Customers, who are more valuable to the enterprises, are very important. In order to attach importance to the customers, retailers need to not only provide the excellent quality of products and services but also know the customers well. It’s important to provide personal marketing strategies and to improve customers’ loyalty to the enterprise. To enhance the relationship marketing, a variety of recommendation systems and methods have been developed, such as typical CF, RFM-based CF and RFM-based association rule mining method. Collaborative filtering is one of the most successful methods. It not only very effective and efficient but also been widely used in various applications. Its widespread use has exposed some well-known limitations, such as sparsity and scalability, which can lead to poor recommendations. This paper proposes a hybrid recommendation method that based on CF method and adjusted product taxonomy. This method tends to make the information and products less complicated. Several experiments on real e-commerce datasets show that the proposed methodology dose provide better quality of recommendations and better performance than association rule mining method and typical RFM-based CF methodology have.
目錄
摘要 i
ABSTRACT ii
致謝 iii
目錄 v
表目錄 viii
圖目錄 vii
一、研究動機與目的 1
二、文獻探討 3
2.1 企業市場與顧客回應性 3
2.1.1 企業市場 3
2.1.2 顧客回應性 3
2.2 顧客終身價值分析與區隔化 4
2.2.1 顧客終身價值分析 5
2.2.2顧客區隔化 7
2.3 資料探勘與推薦系統 7
2.3.1 資料探勘 7
2.3.1.1群集分析 8
2.3.2 推薦系統 10
2.3.2.1關聯法則探勘 12
2.3.2.2協同過濾法 13
2.4 產品分類學 14
三、研究方法 16
3.1 研究流程 16
3.2 使用工具 17
3.3 RFM分析 18
3.4 顧客終身價值分群 20
3.5 產品分類調整 22
3.6 協同過濾分析 30
3.7 個案介紹 – N公司 31
3.8 資料處理 33
四、驗證與評估 34
4.1 資料集 34
4.2 實驗設定 34
4.3 實驗結果 35
5.3.1 AT-CF法與關聯法則探勘法之比較 38
5.3.2 AT-CF法與RFM-CF之比較 39
五、結論、研究限制與未來研究 42
5.1 結論 42
5.2 研究限制 42
5.3 未來研究 43
六、參考文獻 44
附錄 49
1.Adomavicius, G., & Tuzhilin, A. ,2001. Expert-driven validation of rulebased user models in personalization applications. Data Mining and Knowledge Discovery, 5(1–2), 33–58.
2.Agrawal, R., Imielinski, T., Swami, A., 1993. Mining association between sets of items in large database. In: Proceedings of the ACM-SIGMOD Conference, 207–216.
3.Agrawal, R., Srikant, R., 1994. Fast algorithms for mining association rules. In: Proceedings of the VLDB conference, 407–419.
4.Berger, P., Nasr, N., 1998. Customer lifetime value: marketing models and applications. Journal of Interactive Marketing, 12 (1), 17–30.
5.Berry, L. L., 1983. Relationship Marketing: Emerging Perspective on Service Marketing, Chicago: American Marketing Association.
6.Berry, J. A., & Linoff, G. ,1997. Data mining techniques: For marketing, sales, and customer support. New York: Wiley.
7.Bickert, J., 1992. Database Marketing: An Overview. In E. L. Nash, The Direct Marketing Handbook, New York: McGraw-Hill.
8.Billsus, D., & Pazzani, M. J., 1998. Learning collaborative information filters. Proceedings of the 15th International Conference on Machine Learning, 46–54.
9.Bult, J.R., Wansbeek, T.J., 1995. Optimal selection for direct mail. Marketing Science, 14 (4), 378–394.
10.Cheung, Kwok-Wai, Kwok, James T., Law, Martin H., and Tsui, Kwok- Ching, 2003. Mining customer product ratings for personalized marketing. Journal of Decision Making, 35 (2), 231–243.
11.Cho, Yoon Ho, Kim, Jae Kyeong, and Kim, Soung Hie, 2002. A personalized recommender system based on web usage mining and decision tree induction. Journal of Expert Systems with Applications, 23(3), 329–342.
12.Crosby, Lawrence A., Evans, R. K. and Deborah, C., 1990. Relationship Quality in Services Selling: An Interpersonal Influence Perspective, Journal of Marketing, 54 (3), 68-81.
13.Feelders A., Daniels, H., Holsheimer M., 2000. Methodological and practical aspects of data mining, Information & Management, 37(5), 271-281.
14.Freytag, P. V., & Clarke, A. H., 2001. “Business to Business Market Segmentation,” Industrial Marketing Management, 30, 473-486.
15.Ganesan, Shankar., 1994. Determinants of Long-Term Orientation in Buyer-Seller Relationships, Journal of Marketing, 58(2), 1-19.
16.Goodman, J., 1992. Leveraging the customer database to your competitive advantage, Direct Marketing, 55(8), 26–27.
17.Gronroos, C., 1994. From Marketing Mix to Relationship Marketing: Toward A Paradigm Shift in Marketing, Journal of Asia-Australia Marketing, 2 (1), 9-30.
18.Han, J., and Fu, Y., 1995. Discovery of multiple-level association rules from large databases. Proceedings of the International Conference on Very Large Data Bases, 420–431.
19.Han, J., and Kamber, M., 2001. Data Mining: Concepts and Techniques, Morgan Kanfmann.
20.Hearst, M., 1998. K-means clustering, UCB SIMS, Fall. Available from <http://www.sims.berkely.edu/courses/is296a-3/f98/lectures/ui-bakground/sld025.htm>.
21.Heide, Jan B. and George, J., 1988. The Role of Dependence Balancing in Safeguarding Transaction-Specific Assets in Conventional Channels, Journal of Marketing, 52 (1), 20-35.
22.Hill, W.L. and Jones, G.R., 2007. Strategic Management, An Integrated Approach.
23.Hughes, A.M., 1994. Strategic Database Marketing. Probus Publishing, Chicago.
24.Kahan, H., 1998. Using database marketing techniques to enhance your one-to-one marketing initiatives. Journal of Consumer Marketing, 15 (5), 491–493.
25.Kim, J. K., Cho, Y. H., Kim, W. J., Kim, J. R., & Suh, J. Y., 2002. A personalized recommendation procedure for Internet shopping support. Electronic Commerce Research and Applications, 1(3), 301–313.
26.Kim, J. K., Cho, Y. H., 2004. Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce. Expert Systems with Applications 26, 233–246
27.Kotler, P., 2000, Marketing Management :Analysis , Planning , Implementation , and Control, 10th Edition, New Jersey, Prentice-Hall Inc.
28.Kotler, P., Armstrong, G. (2001), Principles of Marketing, 9th edition. Englewood Cliffs, NJ: Prentice-Hall Inc.
29.Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M. S., & Duri, S. S. (2001). Personalization of supermarket product recommendations. Data Mining and Knowledge Discovery, 5(1–2), 11–32.
30.Liu, D.R., Shih, Y.Y., 2004. Integrating AHP and data mining for product recommendation based on customer lifetime value. Information and Management 42 (3), 387-400.
31.Miglautsch, J., 2000. Thoughts on RFM scoring. Journal of Database Marketing, 8 (1), 67–72.
32.Mittal, B., and Lassar, W., 1996. The role of personalization in service encounters. Journal of Retailing, 72 (1), 95–109.
33.Morgan, R. M. and Hunt, S. D., 1994. The Commitment-Trust Theory of Relationship Marketing, Journal of Marketing, 58 (3), 20-38.
34.Mulvenna, M. D., Anand, S. S., and Buchner, A. G., 2000. Personalization on the net using web mining. Communications of the ACM, 43 (8), 122–125.
35.Peppers, D., Rogers, M., 1997. The One to One Future: Building Relationships One Customer at a Time. Bantam Doubleday Dell Publishing.
36.Peppers, D., Rogers, M., and Dorf, B., 1999. READY FOR ONE-TO-ONE MARKETING? HARVARD BUSINESS REVIEW, 151-160.
37.Punj, G.N., Stewart, D.W., 1983. Cluster analysis in marketing research: review and suggestions for application. Journal of Marketing Research, 20 (2), 134–148.
38.Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J., 1994. GroupLens: an open architecture for collaborative filtering of Netnews. In: Proceedings of the CSCW Conference, 175–186.
39.Rijsbergen, C. J. , 1979. Information retrieval (2nd ed.). London: Butterworths.
40.Rich J. R., Michael W. G., 2003. Data Mining – A Tutorial-Based Primer, Addison-Wesley.
41.Sarwar, B., Karypis, G., Konstan, J., Riedl, J., 2000. Analysis of recommendation algorithms for e-commerce. In: Proceedings of the ACM Conference (Electronic Commerce), 158–167.
42.Schafer, J.B., Konstan, J.A., Riedl, J., 2001. E-commerce recommendation applications. Journal of Data Mining and Knowledge Discovery, 5 (1-2), 115–152.
43.Shani, D. and Chalasan, S., 1992. Exploiting Niches Using Relationship Marketing, Journal of Consumer Marketing, 9 (3), 33-42.
44.Shardan U., and Maes, P., 1995. Social information filtering: Algorithms for automating ‘word of mouth’. Proceedings of the Conference on Human Factors in Computing Systems-CHI’95, 210-217.
45.Sherden, W. A., 1994. Marketing Ownership: The Art & Science of Becomin, New York: Amacom.
46.Srikant, R., Agrawal, R., 1995. Mining generalized association rules. In: Proceedings of the VLDB Conference, 407–419.
47.Turnbull, Peter. W., and Wilson, David. T., 1989. “Developing and protecting profitable customer relationships,” Industrial Marketing Management, 18(3), pp.233–238.
48.Wyner, G. A., 1996.Customer Profitability: Linking Behavior to Economic, Marketing Research, 8(2), 36-38.
49.Yun, H., Ha, D., Hwang, B., Ho Ryu, K., 2003. Mining association rules on significant rare data using relative support. The Journal of Systems and Software 67 (3), 181–191.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top