跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭凱倫
研究生(外文):Kai-lun Cheng
論文名稱:結合灰預測、分群法和約略集合理論於上市櫃公司財務危機預警模式之研究
論文名稱(外文):Combination of Grey Prediction、Clustering Analysis and Rough Set :An Application to Business Failure Prediction
指導教授:陳昭宏陳昭宏引用關係
指導教授(外文):Jao-hong Cheng
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:56
中文關鍵詞:財務危機預警模式K-mean灰預測約略集合理論
外文關鍵詞:Grey PredictionRough Set TheoryBusiness Failure PredictionK-mean
相關次數:
  • 被引用被引用:1
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
財務危機預警模式之建構的相關研究中主要以危機發生前一年度歷史資料來建構企業危機預警模式。然而企業財務狀況的惡化並非一夕之間所造成,應加入縱斷面之資訊,藉以將各年度樣本資料所蘊含動態時間趨勢之訊息納入考量。本研究應用灰色預測理論處理縱斷面歷史資料,針對資料的趨勢作預測,產生預測值。並結合K-means分群法和約略集合理論建構預測模型。以灰色預測增強資料的趨勢,分析危機發生前一到七年的歷史資料。預測模型利用K-mean分群法將同質性高的資料作群聚,再利用約略集合具有處理含糊性資料的特性對預測值做分類。藉由決策規則找出未來可能具有企業危機的公司。
研究設計階段建立了(1)灰預測約略集合預警模式、(2)K-mean約略集合預警模式以及(3)結合灰預測、K-mean和約略集合之預警模式。並建立傳統約略集合分類模式作為比較。資料收集民國60至97年間上市櫃財務危機公司之七年期資料作驗證。實證結果顯示,越接近危機發生年度,其預測準確度越高。而本研究建立之三個模型在準確度上皆優於傳統約略集合預警模式。當中又以結合灰預測、K-mean和約略集合之預警模式有最佳的表現。說明了加強資料的趨勢以及,先將資料依相似度作分類,有助於分類準確度的提升。
Operations in Companies are closely related to the stable of the society. When business is in failure, it will result a serious loss in the whole society. Hence, it is necessary to build a business failure prediction model. Previous researches, no matter traditional statistical techniques such as discriminant analysis or artificial intelligence algorithm such as rough set theory, were often constructed by using the samples of business failure happened one year ago(Year-1). However, the appearance of business failure was not suddenly, so that we should find clue in advance, and consider not only cross-section data but also vertical-section one in building business failure prediction model.
We addressed time-series data by grey prediction to generate predicted values as input data, and combined K-mean clustering and rough set theory to develop a grey-prediction business prediction model that identified what the probably company of business failure was. Grey-prediction used to emphasize the trends in historical data, K-mean clustering grouped data by homogeneity and found the failure companies according to decision rules in rough set theory.
In this research, we developed (1) combination of grey-prediction with rough set, (2) combination of K-mean with rough set, and (3) combination of grey-prediction, K-mean and rough set respectively and compare with traditional model that building by pure rough set. Experiment used data from 76 Taiwan public companies for the period 1971 to 2008 from TEJ database. According to the results, the closer to the financial distress announce, the higher the prediction accuracy is. The models developed of this research were all better than traditional prediction model using rough set. The model ,combines grey-prediction, K-mean and rough set, has the best performance. This shows that emphasizes the trends and groups the data by homogeneity can enhance the prediction accuracy.
目錄
中文摘要 i
英文摘要 ii
誌 謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
1.3 研究範圍與限制 3
1.4 研究流程 4
二、文獻回顧 5
2.1 灰色預測 5
2.1.1 預測的意義 5
2.1.1 灰色理論 5
2.1.2 灰色預測簡介 6
2.2 K-mean 分群法 10
2.3 約略集合理論 10
2.3.2 約略集合理論的基本概念 12
2.3.3 約略集合理論應用於分類的相關文獻 13
2.4 企業危機預警文獻回顧 15
2.4.1 傳統統計法建立之企業危機預警模式 15
2.4.2 約略集合理論在企業危機預警系統上的應用 17
三、研究設計 20
3.1 研究步驟 20
3.1.1 樣本資料收集與前處理 21
3.1.2 灰色預測 23
3.1.3 K-mean 分群法 23
3.1.4 約略集合理論 25
3.2 變數選取 26
3.3 小結 27
四、實證結果分析 29
4.1 灰色預測結合約略集合理論 29
4.1.1 傳統歷史值建立約略集合預警模式模式 30
4.1.2 灰色預測值建立約略集合預警模式模式 31
4.2 結合K-mean 分群與約略集合 34
4.2.1 K 值的選定 34
4.3 結合灰預測、K-mean 與約略集合 35
4.4 比較與討論 39
4.4.1 歷史值預警模式與預測值預警模式 39
4.4.2 約略集合預警模式與結合K-mean 之約略集合預警模式 39
4.4.3 結合灰預測、K-mean 分群與約略集合之預警模式 40
五、結論與建議 41
5.1 結論 41
5.2 貢獻 41
5.3 建議與後續研究 42
六、參考文獻 43
附錄1 : Excel 中計算灰預測之自訂函數 46
1.Altman, E.I. (1968), "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy," Journal of Financial, Vol.23. No.4, pp. 589-609.
2.Ahn, B.S. and Cho, S.S. and Kim, C.K. (2000), "The Integrated Methoedology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction," Expert System with Application, Vol. 18, pp.65-74.
3.Beaver, W.H., (1966). "Financial Ratios as Predictors of Failure. Empirical Research in Accounting: Selected Studies," Journal of Accounting Research, Vol. 4, pp. 71-111.
4.Beynon, M.J. and Dri1eld, N. (2005), "An Illustration of Variable Precision Rough Sets Model: An Analysis of The Findings of The UK Monopolies and Mergers Commission," Computers & Operations Research, Vol.32, pp.1739-1759.
5.Beynon, M.J. and Peel, M.J. (2001), "Variable Precision Rough Set Theory and Data Discretisation: An Application to Corporate Failure Prediction," Omega, Vol. 29, pp. 561-576.
6.Blum, M. (1974), "Failing Company Discriminant Analysis," Journal of Accounting Research, Vol. 12, pp1-25.
7.Bose, I. (2006), "Deciding the Financial Health of Dot-coms Using Rough Sets," Information & Management, Vol. 43, pp.835-846.
8.Cheng, J.H., Yeh, C.H. and Chiu, Y.W. (2007), "Identifying significant indicators of business failure using rough sets," Journal of Harbin Institute of Technology (New Series), 14, Sup. 2, pp. 42-47.
9.Deakin, E.B. (1972), "A Discriminant Analysis of Predictors of Business Failure," Journal of Accounting Research , Vol.10. No.1, pp. 167-179.
10.Dimitras, A.I. Zanakis, S.H. and Zopounidis, C. (1996), "A Survey of Business Failures with An Emphasis on Prediction Methods and Industrial Applications," European Journal of Operational Research, Vol. 90, pp. 487–513.
11.Dimitras, A.I. and Slowinski, R. and Susmaga, R. and Zopounidis, C. (1999), "Business Failure Prediction Using Rough Sets," European Journal of Operational Research, Vol. 114, pp. 263-280.
12.Frydman, H. and Altman, E. I. and Kao, D.L. (1985), "Introducing Recursive Partitioning for Financial Classification:The Case of Financial Distress," Journal of Finance, Vol. 40, pp269-291.
13.Han, J. and Kamber, M. (2001) "Data Mining : Concepts and Techniques", Academic Press .
14.Joy, O.M. and Tollefson, J.O. (1975), "on the Financial Application of Discriminant Analysis," Journal of Financial and Quantitative Analysis, December, pp. 723-739.
15.Kumar, A., Agrawal, D.P. and Joshi, S.D. (2004), "Multiscale Rough Set Data Analysis with Application to Stock Performance Modeling," Intelligent Data Analysis, Vol. 8,pp. 197-209.
16.Kumar, P.R. and Ravi, V. (2007),"Bankruptcy Prediction in Banks and Firms via Statistical and Intelligent Techniques - A review," European Journal of Operational Research, Vol. 180, pp. 1-28.
17.Ohlson, J.A, (1980), "Financial Ratios and the Probabilistic Prediction of Bankruptcy ," Journal of Accounting Research, Vol. 18, pp109-131
18.Pawlak, Z. (1982), "Rough Sets," International Journal of Computer and Information Sciences, Vol. 11, pp.341-356.
19.Pawlak, Z. and Skowron, A. (2007), "Rudiments of Rough Sets," Information Sciences, Vol. 177, pp.3-27.
20.Shyng, J.Y. and Wang, F.K. and Tzeng, G.H. and Wu, K.S. (2007), "Rough Set Theory in Analyzing The Attributes of Combination Values for The Insurance Market," Expert Systems with Applications, Vol. 32, pp.56-64.
21.Sanchis, A. and Segovia, M.J. and Gil, J.A. and Heras, A. and Vilar, J.L. (2007), "Rough Sets and The Role of The Monetary Policy in Financial Stability (Macroeconomic Problem) and The Prediction of Insolvency in Insurance Sector (Microeconomic Problem)," European Journal of Operational Research, Vol. 181, pp. 1554–1573.
22.Tan, P.N., Steinbach M. and Kumar V. (2006), "Introduction to Data Mining," Addison Wesley.
23.Tam, C.M., and Tong, T.K.L. and Chan, K.K. (2006), "Rough Set Theory for Distilling Construction Safety Measures," Construction Management and Economics, Vol. 24, pp. 1199–1206.
24.Tsumoto, S. (2004) "Mining Diagnostic Rules from Clinical Databases Using Rough Sets and Medical Diagnostic Model, "Information Sciences, Vol. 162, pp. 65-80.
25.Tseng, T.L. and Kwon, Y.J. and Ertekin, Y.M. (2005), "Feature-Based Rule Induction in Machining Operation Using Rough Set Theory for Quality Assurance," Robotics and Computer-Integrated Manufacturing, Vol. 21, pp.559-567.
26.Thomassey, S. and Fiordaliso, A. (2006), "A Hybrid Sales Forecasting System Based on Clustering and Decision Trees," Decision Support System, Vol.42 pp.208-421.
27.Vesanto, J. and Alhoniemi E. (2000), "Clustering of The Self-organizing Map," IEEE Transaction on Neural Network, Vol.11 No. 3 pp.586-600.
28.Walczak, B. and Massart, D.L. (1999), "Tutorial Rough Sets Theory," Chemometrics Intelligent Laboratory Systems, Vol. 47, pp. 1-16.
29.Wong, J.T. and Chung, Y.S. (2007), "Rough Set Approach for Accident Chains Exploration," Accident Analysis and Prevention, Vol. 39, pp.629-637.
30.Xu, R. and Wunsch, D. (2005), "Survey of Clustering Algorithms, "IEEE Transactions on Neural Networks, Vol. 16, No. 3 pp.677-645.

中文部分:
31.史開泉、吳國威、黃有評(1994), 灰色信息關係論, 第一版,台北:全華資訊圖書公司年。
32.田自力(1996),"灰色理論在預測與決策之研究,"成功大學機械工程研究所博士論文。
33.沈啟賓、莊豔蕙 (1991), "應用灰色系統理論對李福恩十項全能成績的因素分析與成績預測之探討," 體育與運動。
34.鄧聚龍(1996),灰色分析入門,台北:高立圖書有限公司。
35.鄧聚龍、郭洪(1996),灰預測原理與應用,台北:全華圖書公司。
36.鄒宏基 (1985),自動控制系統, 國家出版社。
37.黃博怡、張大成和江欣怡(2006), "考慮總體經濟因素之企業危機預警模型," 金融風險管理季刊, 第二卷, 第二期, pp.75-89
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top