跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志成
研究生(外文):Chih-Cheng Chen
論文名稱:人臉膚質檢測系統
論文名稱(外文):Complexsion analysis system based on computer vision
指導教授:吳先晃
指導教授(外文):Hsien-Huang Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:肌膚紋理膚斑面皰皺紋Sobel邊緣檢測色彩空間
外文關鍵詞:human face detect
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1741
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來膚質檢測分析為一項新興的潮流,為了讓肌膚能與美容產品相輔相成,達到更佳的改善效果,因此透過一個能客觀評價衡量人臉肌膚狀態的系統所給予的建議,並搭配適當合適的美容醫療產品,是其最主要的目的。也因為當前大多系列的檢測儀器,多是採用接觸式的物理探測棒,但僅僅能檢測到探測棒所碰觸到的局部區塊部位,無法完整記錄整張人臉肌膚的所有病灶情形,同時這些物理探測儀器,也必須經過多方的訓練學習,才能得以駕輕就熟,因此若是能以影像的方式分析檢測這些人臉肌膚部位的健康情況,並利用影像處理的技術找出肌膚膚質的病灶特徵,不僅僅能簡化這些繁瑣的操作,亦可處理大範圍與高解析度的人臉肌膚影像,故在此研究中,將以數位影像的方式處理臉部肌膚的資訊,並找出人臉膚質區塊部位中的肌膚紋理、痘疤、膚斑、皺紋等四種病灶特徵。首先會建立起一個標準的取像拍攝環境以擷取人臉臉孔部位的一系列原始影像,並自動的偵測人臉臉孔部位,並再進行人臉肌膚區域(ROI)判斷,並作自動化的切割,取得ROI區域後再針對影像中的色彩空間特性進行轉換,並依序的執行膚斑、痘疤、皺紋、肌膚紋理演算法進行膚質影像特徵值的運算,之後會利用統計學中的Pearson係數來判斷,決定哪些肌膚影像具有什麼樣不同的特性。
Recently, automatic skin inspection and analysis has become a new trend in order to make the skin and cosmetics complement each other and achieve a better improvement. While many products have been available, most of the inspection instruments have some limits. Firstly, these instruments are physically contact probes and the inspection area is only a specific area. They are not able to record all of human face condition completely. Secondly, inspectors need multi-training and learning to be familiar with these instruments. On the other hand, imagine analysis is able to inspect wider range face health status, process high resolution face image and simplify complicated procedures. The main objective of this study is to propose an improved approach which can objectively evaluate human face skin status and collocate proper cosmetic medical products. Digital image analysis techniques were used to process face skin information and estimate face characteristics such as skin texture, acne, spot and wrinkle. Basically, a standard photoing environment is established to capture human face and detect face region automatically. The ROI judgment is the next step to detect the main area for analysis automatically. After ROI zone was detected, color space characteristics in the image will be transformed and spot, acne, wrinkle and skin texture algorithms were executed to obtain various skin properties. Finally, by utilizing Pearson number in statistics, the attributes of the face skin will be decided.
第一章 序論........................................................1
1.1 研究背景動機..............................................2
1.2 研究方法概述..............................................7
1.3 論文的架構................................................7
第二章 基礎原理介紹與相關研究....................................8
2.1 肌膚的概述................................................8
2.2 HSV與YCbCr.............................................14
2.3 Connected Components Labeling..............................17
2.4 攝像系統取像設備........................................18
第三章 臉部膚色擷取與特徵區域劃分...............................22
3.1 YCbCr皮膚顏色轉換.......................................24
3.2 十字濾波器...............................................26
3.3 影像Subsample............................................27
3.4 人臉定位演算法...........................................29
3.5 人臉特徵點擷取...........................................32
3.6 影像標準化辨識分析之前處理..............................36
第四章 肌膚分析演算法............................................39
4.1 L angleA angleB 色彩空間置換..............................39
4.2 膚斑偵測演算法...........................................43
4.3 膚斑延展度計算...........................................44
4.4 皺紋偵測演算法...........................................48
4.5 痘疤偵測演算法...........................................53
4.6 肌膚紋理偵測演算法......................................56
第五章 結論及未來研究方向........................................60
5.1 研究成果..................................................60
5.2 研究限制..................................................61
5.3 未來展望..................................................62
[1] M. Chantler, “Why illuminant direction is fundamental to texture analysis,” IEEE Proc. Vision Image Signal Process. 142, 199-206, 1995.
[2] O. G. Cula and K. J. Dana, “Skin Texture Modeling,” International Journal of Computer Vision, vol. 62, pp.97, 2004.
[3] R. W. Conners and C. A. Harlow, “Theoretical comparison of texture algorithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 2, pp.204, May 1980.
[4] S.E. El-Khamy, O.A. Abdel-Alim, and M.M. Saii, "Neural network face recognition using statistical feature and skin texture parameters," IEEE Proc. of the Eighteenth National Publication, Vol. 1, p.233-p.240, 2001.
[5] M. Gletsos, S. G. Mougiakakou, G. K. Matsopoulos, K. S. Nikita, A. S. Nikita, and D. Kelekis, “A Computer-Aided Diagnostic System to Characterize CT Focal Liver Lesions: Design and Optimization of a Neural Network Classifier,” IEEE Trans. on Information Technology in Biomedicine, Vol. 7, No. 3, Sep. 2003.
[6] T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin,” Technical Report:CUCS-024-05 Department of Computer Science Columbia University, 2005.
[7] J. Kovač, P. Peer, and F. Solina, “Human Skin Colour Clustering for Face Detection,” EUROCON, 2003.
[8] J. Liu, K. Bowyer, D. Goldgof, and S.A. Sarkar, "A comparative study of texture measures for human skin treatment,” Information, Communications and Signal Processing Vol. 1, Sep. 1997.
[9] X. Lladó, M.Petrou, and J. Martí, “Surface texture recognition by surface rendering,” Optical Engineering, Vol. 44, Mar. 2005.
[10] I. Maglogiannis and D. I. Kosmopoulos, “A Digital Acquistion System for Skin Lesions,” Proceedings of SPIE Vol. 5034, 2003.
[11] D. S. Raicu, J. D. Furst, D. Channin, D. H. XU, A. Kurani, and S. Aioanei, “A Texture Dictionary for Human Organs Tissues’ Classification,” Proceed. of the 8th World Multiconf. on Syst., Cyber. and Inform., Jul. 18-21, 2004.
[12] J. Serup, “Efficacy testing of cosmetic products,” Skin Research and Technology, Vol.7 Issue 3, p141, Aug. 2001.
[13] T. Tanaka and T. Murase, "Classification of sarcomas using textural features," Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, Jul. 2000.
[14] T. Tanaka, S. Torii, I. Kabuta, K. Shimizu, M. Tanaka, and H. Oka, "Pattern Classification of Nevus with Texture Analysis," IEEE Proc. EMBS., Sep. 1-5, 2004.
[15] X. Tang, “Texture Information in Run-Length Matrices,” IEEE Transaction on Image Processing, Vol. 7, No. 11, Nov. 1998.
[16] S.E. Umbaugh, R.H. Moss, and W.V. Stoecker, “Automatic color segmentation of images with application to detection of variegated coloring in skin tumors,” IEEE Engineering in Medicine and Biology Magazine, Vol. 8, pp. 43-52, Dec. 1989.
[17] J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “Comparative study of texture measures for terrain classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-6, pp. 269, 1976.
[18] R. C. Gonzales and R.E. Woods, Digital Image Processing, Prentice Hall, 2002.
[19] 吳敏淇,皮膚美容診療室,上旗文化,2004年。
[20] 繆紹綱編著,數位影像處理活用-Matlab,全華科技圖書股份有限公司,1999年。
[21] 新興熱門行職業介紹專刊-工作大贏家,行政院勞委會職訓局,2005年11月號。
[22] 林姿妙,”以資訊技術建構台灣地區成年女性膚質老化程度之預測模型”,元智大學碩士論文。
[23] 莊家和,”紋路特徵編碼法法於紋路分析之研究”,南華大學碩士論文。
[24] 唐德誠,”灰度共現矩陣於多波段多極化SAR影像分類之研究”,國防大學中正理工學院碩士論文。
[25] OpenCV News Group, http://groups.yahoo.com/group/OpenCV/
[26] Gray balance: A key element in color reproduction, http://www.newsandtech.com/issues/2002/02-02/ifra/02-02_greybalance.htm
[27]多功能皮膚檢測系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-2.htm
[28] C. Garcia, and G.Tziritas. “ Face Detection Using Quantized Skin
Color Regions Merging and Wavelet Packet Analysis.” in IEEE
Transactions on Multimedia vol. 1 , No. 3 , pp. 264-277, 1999.
[29]D.Chappard, A. Chennebault, M. Moreau, E. Legrand, M. Audran, and M. F. Basle, “Texture Analysis of X-Ray Radiographs is a More Reliable Descriptor of Bone Loss Than Mineral Content in a Rat Model Of Localized Disuse Induced by the Clostridium botulinum Toxin,” Bone Vol. 28, No. 1 Jan. 2001.
[30]Courage & Khazaka Electronic Germany, “Information and operating instructions for the cutometer MPA580 and its probes,” Aug. 2003.
[31]色彩技術基礎與理論,http://www.keyin.cn/input/Article/Html/2005-07-15/2005071540297.html
[32]多功能皮膚檢測系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-2.htm
[33]皮膚粗糙度分析系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-3.htm
[34] 皮膚防曬係數分析系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-4.htm
[35] 杜卜勒皮膚血流檢測儀之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-5.htm
[36] 黃敏峰 (毛齊武 教授指導) , “人臉追蹤法應用於監控系統之
研究,” 碩士論文, 成功大學電機工程所, 2002.
[37] 王英任 (王文俊 教授指導) , “人臉遮蔽之即時辨識系統設計
與製作,” 碩士論文, 中央大學電機工程所, 2004.
[38] 鍾國亮, “影像處理與電腦視覺,” 台灣東華書局股份有限公
司, 2002 年6 月.
[39] 連國珍, ”數位影像處理,” 儒林圖書有限公司,1992 年9 月.
[40] Chiunhsiun Lin, Kuo-Chin Fan “Triangle-based approach to the detection of human face” Pattern Recognition Vol.34 , pp.1271-1284 , 2001.
[41] J.Miao , B.Yin , K.Wang , L.Shen , X.Chen” A Hierarchical Multiscale
and Multiangle System for Human Face Detection in a complex Background Using Gravity-Center Template “ Pattern Recognition vol.32 , No.7 , pp.1237-48 , 1999
[42] Y.Ishii, H.Hongo, K.Yamamoto, Y.Niwa “Real-Time Face and Head
Detection using Four Directional Features” Automatic Face and Gesture Recognition, Sixth IEEE International Conference 17-19 pp.403 - 408 , 2004.
[43] F.Marquks, V.Vilaplana, A.Buxes “Human Face Segmentation And Tracking Using connected Operators and Partition Projection” Image Processing Vol.3 ,24-28 , pp.617 - 621, 1999.
[44] K.H.Seo , W.Kim , C.Oh , J-J.Lee “Face Detection and Facial Feature
Extraction Using Color Snake” Industrial Electronics , IEEE International Symposium Vol.2 ,8-11 , pp.457 – 462 , 2002.
[45] L.Zhi-fang1 , Y.Zhi-sheng1 , A.K.Jain2 , W.Yun-qiong “Face Detection And Facial Feature Extraction In Color Image” Computational Intelligence and Multimedia Applications 27-30 , pp.126 - 130 , 2003.
[46] S.K.Singh , D.S.Chauhan , M.Vatsa , R.Singh “A Robust Skin Color Based Face Detection Algorithm” Tamkang Journal of Science and Engineering , Vol. 6 , No. 4 , pp.227-234 , 2003.
[47] C.C.Han , H.Y.M.Liao , G.J.Yu , L.H.Chen “Fast face detection via morphology-based pre-processing” Pattern Recognition Vol.33 , pp.1701-1712 , 2000.
[48] C.Garcia , M.Delakis “Convolutional Face Finder : A Neural Architecture for Fast and Robust Face Detection” IEEE Transactions on pattern analysis and machine intelligence , Vol.26,No.11 , 2004.
[49] X.guang , L.J.Zhou , C.S. Zhang” A Novel Algorithm for Rotated Human Face Detection” Computer Vision and Pattern Recognition vol.1 , 13-15 , pp.760 - 765 , 2000.
[50] H.Liu , S.Yon, X.Chen, W.Gao “Rotated Face Detection in Color Image Using Radial Template(RT)” Acoustics, Speech, and Signal Processing IEEE International Conference Vol.3 , 6-10 pp.III - 213-16 , 2003.
[51] Z.YANG, H.AI, B.WU, S.LAO and L.CAI “Face Pose Estimation and
its Application in Video Shot Seletion” Proceeding of the 17th International Conference on Pattern Recognition , 2004.
[52] P.Smith , M.Shah, N.d.V.Lobo, “Determining Driver Visual Attention With One Camera” Intelligent Transportation Systems, IEEE Transactions Vol.4 , Issue 4, pp.205 – 218 , 2003.
[53] S.Han, G.Pan , Z.Wu “Human Face Orientation Detection Using Power Spectrum Based Measurements” Automatic Face and Gesture Recognition, Sixth IEEE International Conference 17-19pp.791 - 796 ,2004.
[54] W.Cao , H.Feng , G.Xiao, Y.Gu, S.Wang ”Study of An Algorithm For Face Pose Adjustment Based On Eye Location” Intelligent Control and Automatio Vol.5 , 15-19 pp.4190 - 4194 , 2004.
[55] B. Yegnanarayana, A.K.sao , B. V. K. Vijaya Kumar, M.Savvides“Determination of pose angle of face using dynamic space warping” Information Technology: Coding and Computing Vol.1 , 5-7 ,pp.661 - 664 , 2004.
[56] C. Garcia, and G.Tziritas. “ Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis.” in IEEE Transactions on Multimedia vol. 1 , No. 3 , pp. 264-277, 1999.
[57]K. K. Sung , T. Poggio, “Example-based learning for view-based human face detection”, in Proc. Image Understanding Workshop, pp.843-850 , 1994.
[58]H. A. Rowley, S. Baluja, and T. Kanade, “Human face detection in visual scenes”, Tech. Rep. CMU-CS-95-158R, Carnegie Mellon University, 1995.
[59]S. H. Jeng, H. Y. Mark Liao, C. C. Han, M. Y. Chern, and Y. T. Liu,“An efficient approach for facial feature detection using geometrical face model”, Pattern Recognition, 1997.
[60]B. Moghaddam, and A. Pentland, “Probabilistic Visual Learning for Object Representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 696-710, 1997.
[61]B. Moghaddam, W. Wahid, and A. Pentland, “Beyond Eigenfaces: Probabilistic Matching for Face Recognition,” IEEE International Conference on Automatic Face and Gesture Recognition, pp. 21-35,1998.
[62]E. Osuna, R. Freund, and F. Girosi, “Training Support Vector Machines : an Application to Face Detection,” Proc. Computer Vision and Pattern Recognition, pp. 17-19, 1997.
[63] R. Jain, R. Kasturi and B.G. Schunck, “Machine Vision,”International Editions, 1995.
[64]Nikon D40X產品簡介http://www.coolpix.com.tw/product/digital/D40X/digital_D40x.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top