(34.204.201.220) 您好!臺灣時間:2021/04/19 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許博喻
研究生(外文):Bo-yu Syu
論文名稱:以啟發式演算法優化之語意修辭模糊邏輯控制器設計
論文名稱(外文):Design of Linguistic Hedge Fuzzy Logic Controller with Heuristic-Algorithm Enhancements
指導教授:陳春僥黃崇禧
指導教授(外文):Chuen-Yau ChenChorng-Sii Hwang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:基因演算法啟發式演算法導引模擬退火演算法粒子群尋優演算法導引螞蟻演算法
外文關鍵詞:genetic algorithmguided simulated annealing algorithmheuristic algorithmguided ant algorithmparticle swarm optimization algorithm.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們以四種應用於語意修辭模糊邏輯控制器之啟發式演算法,其中包含改良型基因演算法、導引模擬退火演算法、導引螞蟻演算法、粒子群尋優演算法來做最優化搜尋,用以尋出經優化過後的語意修辭組合式向量。

模擬時,我們是將語意修辭模糊邏輯控制處理器應用於倒車入庫的實驗上,而且我們會在此控制器的隸屬函數做區間等分、多等分區間、寡等分區間、區間不等分等區間分割。隸屬函數分割將會影響倒車品質,所以我們會針對這些影響倒車入庫的因素做探討。模擬結果證實具有啟發式演算法的語意修辭模糊邏輯控制處理器的效能比傳統模糊邏輯控制器好。而啟發式演算法的效能以十六等分區間導引模擬退火演算法為最佳,其疊代次數為1028,誤差為0.04。
In this thesis, four heuristic algorithms are applied to design the linguistic-hedge fuzzy logic controller. These algorithms include genetic algorithm, guided simulated annealing algorithm, guided ant algorithm, particle swarm optimization algorithm. For the controller, we apply different partition strategies on the input-variable domains and analyze the effects on the performance of the controller. The input-variable domains are partitioned in the following manners: the uniform sub-intervals, the more uniform sub-intervals, the fewer uniform sub-intervals, and the non-uniform sub-intervals. The simulation results on the truck-backer upper control system show better performance of the linguistic-hedge fuzzy logic controller. Consider the performances of different strategies. The linguistic-hedge fuzzy logic controller having the input-variable domains with 16 uniform sub-intervals associated with guided simulated annealing algorithm has the best performance. The number of iterations is 1028; the docking error is 0.04.
目 錄

中文摘要 ............................................................................................................................................. i
英文摘要 ............................................................................................................................................. iii
誌謝 ............................................................................................................................................. v
目錄 ............................................................................................................................................. vii
表目錄 ............................................................................................................................................. ix
圖目錄 ............................................................................................................................................. xi
第一章 緒論................................................................................................................................. 1
1.1 研究背景..................................................................................................................... 1
1.2 研究動機..................................................................................................................... 3
1.3 論文架構..................................................................................................................... 3
第二章 語意修辭模糊邏輯控制器........................................................................... 4
2.1 模糊叢集理論及運算....................................................................................... 4
2.2 模糊邏輯控制器................................................................................................... 5
2.2.1 模糊化模組............................................................................................................... 5
2.2.2 語意規則知識庫................................................................................................... 7
2.2.3 模糊推論機............................................................................................................... 8
2.2.4 解模糊化模組......................................................................................................... 9
2.3 語意修辭模糊邏輯控制器........................................................................... 10
2.3.1 語意修辭..................................................................................................................... 11
2.3.2 語意修辭在隸屬函數上的影響............................................................... 12
2.3.3 組合式向量............................................................................................................... 13
2.4 倒車入庫實驗…..................................................................................................... 14
2.4.1 實驗敘述..................................................................................................................... 14
2.4.2 效能指標..................................................................................................................... 16
第三章 應用於尋找組合式向量之啟發式演算法....................................... 17
3.1 啟發式演算法......................................................................................................... 17
3.2 基因演算法............................................................................................................... 17
3.2.1 改良型基因演算法............................................................................................. 19
3.3 模擬退火法.. ............................................................................................................ 21
3.3.1 導引模擬退火法................................................................................................... 23
3.3.2 波茲曼機率............................................................................................................... 26
3.4 導引螞蟻演算法................................................................................................... 27
3.4.1 螞蟻機率..................................................................................................................... 28
3.4.2 導引螞蟻演算法................................................................................................... 30
3.5 粒子群尋優演算法............................................................................................. 33
3.5.1 改良型粒子群尋優演算法........................................................................... 35
第四章 模擬結果與討論................................................................................................... 39
4.1 語意修辭在倒車上的影響........................................................................... 39
4.2 區間等分的探討................................................................................................... 56
4.2.1 多等分區間在倒車上的影響..................................................................... 56
4.2.2 寡等分區間在倒車上的影響..................................................................... 61
4.3 區間不等分在倒車上的影響..................................................................... 65
4.4 討論................................................................................................................................. 69
第五章 結論與未來研究方向....................................................................................... 73
5.1 結論................................................................................................................................. 73
5.2 未來研究方向......................................................................................................... 74
參考文獻 ............................................................................................................................................. 75
附錄A ............................................................................................................................................. 79
附錄B ............................................................................................................................................. 82
作者簡歷 ............................................................................................................................................. 83
參考文獻
[1] P. J. King and E. H. Mandani, “The application of fuzzy control systems to industrial processes,” Automatica, vol. 13, no. 3, pp. 235–242, 1977.
[2] L. A. Zadeh, “Fuzzy sets,” Inform. Contr., vol. 8, pp. 338–353, 1965.
[3] C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller—Part I, II,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404–432, Mar./Apr. 1990.
[4] D. G. Schwartz and G. J. Klir, “Fuzzy logic flowers in Japan,” IEEE Spectrum, vol. 29, no. 7, pp. 32–35, July 1992.
[5] P. K. Simpson, “Fuzzy min–max neural networks—Part 1: Classification,” IEEE Trans. Neural Networks, vol. 3, pp. 776–786, Sept. 1992.
[6] S. Abe and M. S. Lan, “A method for fuzzy rules extraction directly from numerical data and its application to pattern classification,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 18–28, Feb. 1995.
[7] L. X.Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1414–1427, Nov. 1992.
[8] R. L. P. Chang and T. Pavlidis, “Fuzzy decision tree algorithms,” IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp. 28–35, Jan. 1977.
[9] I. B. Turksen andY. Tian, “Two-level tree search in fuzzy expert system,” IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 555–568, Apr. 1995.
[10] B. D. Liu and C. Y. Huang, “Design and implementation of the tree-based fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, pp. 475–487, June 1997.
[11] C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic algorithm,” in Proc. 4th Int. Conf. Genetic Algorithms, San Diego, CA, July 1991, pp. 450–457.
[12] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. of Michigan Press, 1975.
[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley, 1989.
[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi , “Optimization by Simulated Annealing,” Science, New Series, Vol. 220, May 1983, pp. 671-680.
[15] Dorigo, M. and Gambardella, L.M., “Ant colonies for the traveling salesman problem,” Bio Systems, Vol. 43, pp.73-81, 1997.
[16] J. Kennedy, and R. Eberhart, “Particle swarm optimization,” in Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ, 1995, pp. 1942–1948.
[17] G. A. Vignaux and Z. Michalewicz, “A genetic algorithm for the linear transportation problem,” IEEE Trans. Syst. Man, Cybern., vol. 21, pp. 445–454, Mar./Apr. 1991.
[18] C. H. Chang and Y. C. Wu, “The genetic algorithm based tuning method for symmetric membership functions of fuzzy logic control systems,” in Proc. IEEE Conf. Industrial Automatic Control Emerging Technological Applications, Taipei, R.O.C., Dec. 1995, pp. 421–428.
[19] T. Iokibe, “A method for automatic rule and membership function generation by discretionary fuzzy performance function and its application to a practical system,” in Proc. 1st Int. Joint Conf. North American Fuzzy Information Processing Society Biannual Conf., Ind. Fuzzy Control Intelligient Systems Conf. NASA Joint Technology Workshop Neural Networks Fuzzy Logic, San Antonio, TX, Dec. 1994, pp. 363–364.
[20] R. Krishnapuram, “Generation of membership functions via possibilistic clustering,” in Proc. 5th IEEE Int. Conf. Fuzzy Systems, Orlando, FL, June 1994, pp. 902–908.
[21] C. J. Kim and B. D. Russell, “Automatic generation of membership function and fuzzy rule using inductive reasoning,” in Proc. 3rd IEEE Int. Conf. Industrial Fuzzy Control Intelligient Systems, Houston, TX, Dec. 1993, pp. 93–96.
[22] L. Chen, J. Yan, and Y. He, “A new approach for the automatic generation of membership functions and rules of multi-variable fuzzy system,” in Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, Nov. 1995, pp. 1342–1380.
[23] C. J. Wu and C. C. Li, “Automatically generated rules and membership functions for a neural fuzzy-based fault classifier,” in Proc. 37th Midwest Symp. Circuits Systems, Los Angeles, CA, Aug. 1994, pp. 1377–1380.
[24] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 28–44, Jan. 1973.
[25] W. Banks, “Mixing crisp and fuzzy logic in applications,” in WESCON’94, Idea/Microelectronics Conf. Record, Anaheim, CA, Sept. 1994, pp. 94–97.
[26] B. Bouchon-Meunier, “Linguistic hedges and fuzzy logic,” in Proc. 1st IEEE Int. Conf. Fuzzy Systems, San Diego, CA, Mar. 1992, pp. 247–254.
[27] V. Novák, “A horizon shifting model of linguistic hedges for approximate reasoning,” in Proc. 5th IEEE Int. Conf. Fuzzy Systems, New Orleans, LA, Sept. 1996, pp. 423–427.
[28] C. Y. Huang, C. Y. Chen, and B. D. Liu, “Current-mode linguistic hedge circuit for adaptive fuzzy logic controllers,” Electron. Lett., vol. 31, no. 17, pp. 1517–1518, Aug. 1995.
[29] C. Y. Chen, C. Y. Huang, B. D. Liu, and T. J. Su, “A current-mode fuzzy linguistic hedge circuit—More or less,” in Proc. IEEE Int. Conf. Fuzzy Systems, New Orleans, LA, Sept. 1996, pp. 1080–1085.
[30] Y. M. Park, U. C. Moon, and K. Y. Lee, “A self-organizing fuzzy logic controller for dynamic systems using a fuzzy auto-regressive moving average(FARMA)model,” IEEE Trans. Fuzzy Syst.,vol.3,no. 1, pp. 75-82, Feb.1995.
[31] 李世炳,“簡介導引模擬退火法及其應用”,物理雙月刊,2002,廿四卷二期。
[32] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, NJ: Prentice-Hall, 1992.
[33] B. D. Liu, C. Y. Chen, J. Y. Tsao, “Design of Adaptive Fuzzy Logic Controller Based on Linguistic-Hedge Concepts and Genetic Algorithms.” IEEE Trans. on Systems, Man, and Cybernetics. Part B. Vol. 31, No.1, pp. 32-53, Feb. 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔