跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/07 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴世育
研究生(外文):Shih-Yu Lai
論文名稱:應用瀰集演算法作分散式發電機與電容器之最佳位置及容量大小設置
論文名稱(外文):Optimal Sitting and Sizing of Distributed Generation and Capacitor Using Memetic Algorithm
指導教授:梁瑞勳梁瑞勳引用關係
指導教授(外文):Ruey-Hsun Liang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:瀰集演算法區域搜尋法分散式發電電容器置放配電系統規劃
外文關鍵詞:capacitor placementdistribution system planningmemetic algorithmdistributed generationlocal search
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分成三個問題,第一個問題是站在獨立配電公司的角度來看,考慮到變電站設備不易擴增,且在負載不斷提升情況下,配電系統規劃員以裝設分散式發電機的方式擴充系統容量,決定配電系統中的分散式發電機之最佳位置及容量大小設置。第二個問題是針對配電系統中,由於有虛功率需求的存在,所以傳輸線路上就會有虛功率流動,影響系統電壓、電流的變動,因此會造成電壓降低、線路損失提高等問題發生。配電公司以裝設電容器補償虛功率,作電容器之最佳位置設置,以提升匯流排電壓及降低輸電線傳輸損失等,並提高供電的可靠度。第三個問題是將前面兩種問題同時考量,意即配電系統規劃員以裝設分散式發電機的方式,因應負載量不斷提升的情況而提升配電系統容量,且同時考慮投入電容器對系統作補償,所以配電規劃員的目標,在決定分散式發電機與電容器的最佳位置及容量大小。本論文提出以瀰集演算法求解以上所述的問題,此演算法的特性在配合區域搜尋,精煉出多區域的最佳解,讓個體間交換好的資訊,使解更容易達到全域最佳解。測試結果同時以多種的區域搜尋演算法比較,並選出最適合的區域搜尋法。利用此演算法作分散式發電機與電容器的最佳位置及容量大小的設置問題,確實比其他演算法的效果來得佳。
This thesis includes three problems. First, distribution companies consider the expansion of substation facilities is not simple, and the power demand keeps on raise. The distribution system planners are using distributed generation to expand the system capacity. They need to decide optimal sitting and sizing of distributed generation. Second, due to the reactive power demands exist in the power system, there are reactive power flows on the transmission lines. Therefore the system voltage drop and line loss problems will be appeared. The distribution system planners decide optimal sitting of capacitors that can advance bus voltage, reduce transmission line loss and improve the reliability. Finally, the above of two problems have to consider at the same time. The distribution system planners decide optimal sitting and sizing of distributed generation and capacitor. Using distributed generation to expand the system capacity and capacitor could compensate the reactive power. This thesis presents a method called memetic algorithm for the above three problems. Its feature is that combine with local search heuristics. By exchange the good information between every individual of a population then the solution can be achieved the global minima simply. It is shown in experiments that apply many kinds of local search methods to decide the best one then used to determine the optimal sitting and sizing of distributed generation and capacitor. Numerical results show that memetic algorithm is an effective and fast method than other heuristics.
中文摘要-------------------------------------------------------------------i
英文摘要------------------------------------------------------------------ii
誌謝---------------------------------------------------------------------iii
目錄----------------------------------------------------------------------iv
表目錄--------------------------------------------------------------------vi
圖目錄-------------------------------------------------------------------vii
第一章 緒論--------------------------------------------------------------1
1.1 研究背景與動機----------------------------------------------------1
1.2 研究方法與文獻回顧------------------------------------------------3
1.3 論文大綱----------------------------------------------------------5

第二章 問題描述----------------------------------------------------------7
2.1 前言--------------------------------------------------------------7
2.2 分散式發電機之最佳位置及容量大小設置------------------------------7
2.3 電容器之最佳位置裝設----------------------------------------------12
2.4 分散式發電機與電容器之最佳位置及容量大小設置----------------------15

第三章 研究方法與理論---------------------------------------------------19
3.1 前言-------------------------------------------------------------19
3.2 瀰集演算法-------------------------------------------------------19
3.3 禁忌搜尋法-------------------------------------------------------27
3.4 模擬退火法-------------------------------------------------------31
3.5 登山搜尋法-------------------------------------------------------36

第四章 應用瀰集演算法作分散式發電機之最佳位置及容量大小設置-------------38
4.1 前言-------------------------------------------------------------38
4.2 應用瀰集演算法作分散式發電機之最佳位置及容量大小設置問題---------38
4.3 實例測試與分析---------------------------------------------------42
4.4 本章結論---------------------------------------------------------47

第五章 應用瀰集演算法作電容器之最佳位置裝設-----------------------------48
5.1 前言-------------------------------------------------------------48
5.2 應用瀰集演算法作電容器之最佳位置裝設問題-------------------------48
5.3 實例測試與分析---------------------------------------------------52
5.4 本章結論---------------------------------------------------------57

第六章 應用瀰集演算法作分散式發電機與電容器之最佳位置及容量大小設置-----58
6.1 前言-------------------------------------------------------------58
6.2 應用瀰集演算法作分散式發電機與電容器之最佳位置及容量大小設置問題-58
6.3 實例測試與分析---------------------------------------------------62
6.4 本章結論---------------------------------------------------------69

第七章 結論與未來展望---------------------------------------------------70
7.1 結論-------------------------------------------------------------70
7.2 未來展望---------------------------------------------------------71

作者簡介------------------------------------------------------------------73
參考文獻------------------------------------------------------------------74
[1] I. S. Bae, J. O Kim, J. C. Kim, and C. Singh, “Optimal operating strategy for distributed generation considering hourly reliability worth,” IEEE Transactions on Power Systems, Vol. 19, No. 1, pp. 287-292, Feb. 2004.
[2] M. Pipattanasomporn, M. Willingham, and S. Rahman, “Implications of on-site distributed generation for commercial / industrial facilities, ”IEEE Transactions on Power Systems, Vol. 20, No. 1, pp. 206-212, Feb. 2005.
[3]W. El-Khattam, K. Bhattacharya, Y. G. Hegazy, and M. M. A. Salama, “Optimal investment planning for distributed generation in a competitive electricity market,” IEEE Transactions on Power Systems, Vol. 19, No. 3, pp. 1674-1684, Aug. 2004.
[4]C. Wang, and M. H. Nehrir, “Analytical approaches for optimal placement of distributed generation sources in power systems,” IEEE Transactions on Power Systems, Vol. 19, No. 4, pp. 2068-2076, Nov. 2004.
[5]G. Celli, E. Ghiani, S. Mocci, and F. Pilo, “A multiobjective evolutionary algorithm for the sizing and sitting of distributed generation,” IEEE Transactions on Power Systems, Vol. 20, No. 2, pp. 750-757, May 2005.
[6]W. El-Khattam, Y. G. Hegazy, and M. M. A. Salama, “An integrated distributed generation optimization model for distribution system planning,” IEEE Transactions on Power Systems, Vol. 20, No. 2, pp. 1158-1165, May 2005.
[7]R. A. F. Currie, G. W. Ault, and J. R. McDonald, “Methodology for determination of economic connection capacity for renewable generator connections to distribution networks optimised by active power flow management,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 153, No. 4, pp. 456-462, July 2006.
[8]P. M. Costa, and M. A. Matos, “Loss allocation in distribution networks with embedded generation,” IEEE Transactions on Power Systems, Vol. 19, No. 1, pp. 384-389, Feb. 2004.
[9]L. F. Ochoa, A. P. Feltrin, and G. P. Harrison, “Evaluating distributed generation impacts with a multiobjective index,” IEEE Transactions on Power Delivery, Vol. 21, No. 3, pp. 1452-1458, July 2006.
[10]A. Keane, and M. O''Malley, “Optimal allocation of embedded generation on distribution networks,” IEEE Transactions on Power Systems, Vol. 20, No. 3, pp. 1640-1646, Aug. 2005.
[11]A. Mendes, P. M. Franca, C. Lyra, C. Pissarra, and C. Cavellucci, “Capacitor placement in large-sized radial distribution networks,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 152, No. 4, pp. 496-502, July 2005.
[12]J. P. Chiou, C. F. Chang, and C. T. Su, “Ant direction hybrid differential evolution for solving large capacitor placement problems,” IEEE Transactions on Power Systems, Vol. 19, No. 4, pp. 1794-1800, Nov. 2004.
[13]K. N. Miu, H. D. Chiang, and G. Darling, “Capacitor placement, replacement and control in large-scale distribution systems by a GA-based two-stage algorithm,” IEEE Transactions on Power Systems, Vol. 12, No. 3, pp. 1160–1166, Aug. 1997.
[14]M. Delfanti, G. P. Granelli, P. Marannino, and M. Montagana, “Optimal capacitor placement using deterministic and genetic algorithms,” IEEE Transactions on Power Systems, Vol. 15, No. 3, pp. 1041-1046, Aug. 2000.
[15]Y. C. Huang, H. T. Yang, and C. L. Huang, “Solving the capacitor placement problem in a radial distribution system using tabu search approach,” IEEE Transactions on Power Systems, Vol. 11, No. 4, pp. 1868-1873, Nov. 1996.
[16]R. A. Gallego, A. J. Monticelli, and R. Romero, “Optimal capacitor placement in radial distribution networks,” IEEE Transactions on Power Systems, Vol. 16, No. 4, pp. 630-637, Nov. 2001.
[17]P. Merz, and B. Freisleben, “Fitness landscape analysis and memetic algorithms for the quadratic assignment problem,” IEEE Transactions on Evolutionary Computation, Vol. 4, No. 4, pp. 337-352, Nov. 2000.
[18]E. K. Burke, and A. J. Smith, “Hybrid evolutionary techniques for the maintenance scheduling problem,” IEEE Transactions on Power Systems, Vol. 15, No. 1, pp. 122-128, Feb. 2000.
[19]M. Gen, and R. Cheng, Genetic Algorithms and Engineering Optimization., New York: Wiley, 2000.
[20]F. Glover, and M. Laguna, Tabu Search., Boston: Kluwer Academic Publishers, 1997.
[21]P. J. M. van Laarhoven, and E. H. L. Arts, Simulated Annealing: Theory and Applications, Reidel Publishing Company, Dordrecht, Holland, 1987
[22]J. W. Pepper, B. L. Golden, and E. A. Wasil, “Solving the traveling salesman problem with annealing-based heuristics: a computational study,” IEEE Transactions on Systems, Man and Cybernetics-part A: Systems and Humans, Vol. 32, No. 1, pp. 72-77, Jan. 2002.
[23]R. H. Liang, and Y. S. Wang, “Main transformer ULTC and capacitors scheduling by simulated annealing approach,” International Journal of Electrical Power and Energy Systems, pp. 531-538, Oct. 2001.
[24]K. A. Sullivan, and S. H. Jacobson, “A convergence analysis of generalized hill climbing algorithms,” IEEE Transactions on Automatic Control, Vol. 46, No. 8, pp. 1288-1293, Aug. 2001.
[25]M. M. A. Salama, and Y. Chikhani, “A simplified network approach to the VAR control problem for radial distribution systems,” IEEE Transactions on Power Delivery, Vol. 8, No. 3, pp. 1529-1535, July 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top