(3.238.206.122) 您好!臺灣時間:2021/04/21 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李書琳
研究生(外文):Shu-Lin Li
論文名稱:緻密性熱交換器之三角突片與窩型鰭片之流場可視化與性能分析
論文名稱(外文):Flow Visualization and Performance Characterization for Triangular and Dimple Fin Patterns for Compact Heat Exchangers
指導教授:陳英洋
指導教授(外文):In-Youn Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:緻密性熱交換器散熱鰭片窩型鰭片三角翼鰭片流場可視渦流產生器
外文關鍵詞:Heat sinkCompact Heat ExchangersVortex Gener
相關次數:
  • 被引用被引用:2
  • 點閱點閱:269
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:2
本論文為研究緻密性熱交換器在強制對流下的熱傳性能及壓降,且搭配流場可視化說明三角翼渦流產生器在不同雷諾數下的流動現象。本實驗主要測試散熱鰭片整體尺寸長×寬×高分別為 的矩型,鰭片間距為 ,風速為 ,其測試樣品有平板型鰭片、小三角翼、中三角翼、大三角翼及大三角異攻角等渦流產生器之散熱鰭片;亦測試窩形與平板複合式鰭片、窩形鰭片、單組窩形鰭片及兩組窩形鰭片。
研究結果顯示,三角異攻角渦流產生器不但有效增加熱傳量,相對同大小之三角翼可降低約 的壓降,且在相同泵功率下,三角異攻角渦流產生器有最低之熱阻值。以 法則評估,三角異攻角渦流產生器所需要之散熱面積最低,尤其在風速 時,約可比平板減少 的散熱面積。以 法則評估,三角異攻角渦流產生器所需要之運作功率最低,尤其在風速 時,比平板降低高達 的功率。由不同散熱評價比較得知,三角異攻角渦流產生器在風速 時,可減少最多的散熱面積與功率,在設計上為最佳的選擇。
The heat transfer coefficient and pressure drop by different air flow rates of in compact fin heat exchangers were empirically studied and the flow visualizations were taken to see the flow phenomenon in the flow channels. The test heat sink has a rectangular size of , the fin pitch is . The test samples included the plate fin, small triangular fin, middle triangular fin, big triangular fin and triangular different angle of attack fin for generating vortex. Also, the combined dimple and plate fin, dimple fin, one groups dimple fin and two groups dimple fin were tested.
The results indicated that the triangular different angle of attack fin not only effectively increases heat transfer, but also reduce approximately pressure drops as compared to the big triangular fin with relative same size. In addition, it induces the lowest thermal resistance as compared to the other fins for the same pumping power. Using the principle for evaluation, tit needs the smallest heat transfer area and can reduce area as compared to the plate fin at wind speed about . While using the principle for evaluation, it needs the lowest operation power. As speed about , it reduces of power as compared to the plate fin. From the above discussion, the triangular different angle of attack fin can reduce the most pumping power and heat transfer, thus, it is the best choice for design.
中文摘要 IV
英文摘要 V
致 謝 VI
目 錄 VII
表 目 錄 IX
圖 目 錄 X
符 號 說 明 XI
第一章 序論 1
1. 1 前言 1
1. 2 研究動機 2
1. 3 研究目的 3
1. 4 研究背景 4
1. 5 文獻回顧 6
第二章 實驗設備與量測 11
2. 1 風洞量測系統 11
2. 1.1 散熱鰭片安裝 13
2. 1.2 實驗操作步驟 14
2. 2 可視化風洞系統 15
2. 2.1 可視化實驗設備 16
2 .2.2 可視化操作步驟 17
第三章 理論分析 18
3. 1 熱傳分析 18
3. 2 熱阻評估 19
3. 3 壓降分析 20
3. 4 無因次參數 25
3. 5 性能評估 27
3. 5.1 散熱評價目的 28
3. 5.2 數值法則PEC 29
3. 5.3 應用VG-1法則 30
3. 5.4 應用FG-3法則 31
第四章 散熱鰭片設計 33
4. 1 設計構想 33
4. 2 三角翼渦流產生器 33
4. 3 凹凸板窩型散熱鰭片 36
第五章 結果與討論 38
5. 1 渦流產生器 38
5. 1.1 風速與壓降實驗結果 40
5. 1.2 風速與熱傳實驗結果 41
5. 1.3 泵功率與熱阻實驗結果 42
5. 2 窩型散熱鰭片 43
5. 2.1 風速與壓降實驗結果 45
5. 2.2 風速與熱傳實驗結果 46
5. 2.3 泵功率與熱阻實驗結果 48
5. 3 散熱鰭片無因次分析 49
5. 3.1 雷諾數與凡寧摩擦因子 49
5. 3.2 雷諾數與庫爾本因子 50
5. 3.3 葛雷茲數的倒數與熱傳的關係 51
5. 3.4 散熱評價VG-1法則 52
5. 3.5 散熱評價FG-3法則 53
5. 4 三角異攻角流場可視 54
第六章 結論 56
參 考 文 獻 57
[1]web.sfc.keio.ac.jp/.../architecture/lec01.html
[2]L. A. Nelson, K. S. Sekhon, J. E. Fritz, 1978, “Direct Heat Pipe Cooling of Semiconductor Devices,” Proc. Int. Heat Pipe Conf., 3rd, pp. 373-376.
[3]www.shbear.com/2/lib/200408/20/20040820169.htm
[4]www.dnbsc.com/bbs/topicshow.php?pid=376
[5]A. M. Jacobi, and R. K. Shah, 1995, “Heat Transfer Surfaces Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress,” Experimental Thermal and Fluid Science, Vol. 11, pp. 295-309.
[6]M. Fiebig, 1998, “Vortices Generators and Heat Transfer,” Trans. IchemE, Vol. 76, Part A, pp. 108-123.
[7]C. A. Soule, 2001, “Future Trends in Heat Sink Design,” Electronics Cooling, Vol. 7, No. 1, pp. 18-27.
[8]M. Osterman, 1996, “Technical Brief,” The Institute of Electrical and Electronics Engineers, Vol. 7, No. 1, pp. 53-55.
[9]S. B. Sathe, V. V. Calmidi, and R. J. Stutzman, 2001, “Parameters Affecting Package Thermal Performance-a Low End System Level Example,” Electronics Cooling, Vol. 7, No. 2, pp. 44-51.
[10]D. G. Rich, 1973, “The Effect of Fin Spacing on the Heat Transfer and Fraction Performance of Milti-Row, Smooth Plate Fin-and-Tube Heat Exchangers ,”ASHRAE Transaction, Vol. 81, part 1, pp. 307-312.
[11]A. Achaichia, and T. A. Cowell, 1988, “Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvered Plate Fin Surface,” Experimental Thermal and Fluid Science, Vol. 1, pp.147~157.
[12]江慶銘, 2006, “緻密性堆疊型散熱鰭片在強制對流下之熱流分析,” 元智大學機械工程學系碩士論文。
[13]K. S. Yang, C. M. Chiang, Y. T. Lin, K. H. Chien, and C. C. Wang, 2007, “On the Heat Transfer Characteristics of Heat Sinks: With and Without Augmentation,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 2667-2674.
[14]R. L. Webb, and P. Trauger, 1991, “Flow Structure in the Louvered Fin Heat Exchanger Geometry,” Experimental Thermal and Fluid Science, Vol. 4, pp. 25-217.
[15]C. C. Wang, W. S. Lee, and W. J. Sheu, 2001, “A Comparative Study of Compact Enhanced Fin-and-Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, Vol.44, pp. 3565-3573.
[16]鍾志豪, 2007, “堆疊型散熱鰭片在強制對流下之壓降與熱傳分析,” 元智大學機械工程學系碩士論文。
[17]E. Thurlow, E. Prather, and V. Mansingh, 2000, “Fan Swirl Effect on Cooling Heat Sink and Electronic Packages,” Sixteenth IEEE SEMI-THERM Symposium, Vol. 1, No. 7, pp. 91-98.
[18]F. J. Edwards, and G. J. Alker, 1974, “The Improvement of Forced Convection Surface Heat Transfer Using Surfaces Protrusions in the Form of (A) Cubes and (B) Vortex Generators,” Proc. 5th International Heat Transfer Conf., Tokyo, Vol. 2, pp. 244-248.
[19]S. Tiggelbeck, N. K. Mitra, and M. Fiebig, 1993, “Experimental Investigation of Heat Transfer Enhancement and Flow Losses in a Channel with Double Rows of Longitudinal Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 36, No. 9, pp. 2327-2337.
[20]S. Tiggelbeck, N. K. Mitra, and M. Fiebig, 1994, “Comparison of Wing-Type Vortex Generators for Heat Transfer Enheacement in Channel Flows,” ASME Journal of Heat Transfer, Vol. 116, pp. 880-885.
[21]G. Biswas, N. K. Mitra, M. Fiebig, 1994, “Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 283-291.
[22]M. Fiebig, A. Valencea, and N. K. Mitra, 1993, “Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers,” Experimental Thermal and Fluid Science, Vol. 7, pp. 287-295.
[23]A. Valencea, M. Fiebig, and N. K. Mitra, 1996, “Heat Transfer Enhancement by Longitudinal Vortices in a Fin-Tube Heat Exchanger Element with Flat Tubes,” ASME Journal of Heat Transfer , Vol. 118, pp. 209-211.
[24]R. Sedney, 1973, “A Survey of the Effects of Small Protuberances on Boundary-Layer Flows,” AIAA Journal, V. 11, pp. 782-792.
[25]M. Fiebig, 1998, “Vortices Generators and Heat Transfer,” Trans. IchemE, V.76, Part A, pp. 108-123.
[26]J. S. Leu, Y. H. Wu and J. Y. Jang, 2004, “Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers with a Pair of Block Shape Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4327-4338.
[27]T. Tanaka, M. Itoh, T. Hatada, and H. Matsushima, 2003, “Influence of Inclination Angle, Attack Angle, and Arrangement of Rectangular Vortex Generators on Heat Transfer Performance,” Mechanical Engineering Research Laboratory, Hitachi, Ltd. pp. 300-0013.
[28]S. D. Hwang, H. H. Cho, “Heat Transfer Enhancement of Internal Passage Using Dimple/Protrusion,” HTE-24.
[29]Y. O. Lee, J. Ahn, J. C. Sung, and J. C. Lee, “Large Eddy Simulation of Turbulent Heat Transfer in a Dimpled Channel,” TRB-24.
[30]H. K. Moon, T. O. Connell, and B. Glezer, 2000, “Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage,” Journal of Engineering for Gas Turbines and Power, Vol. 122, pp. 307-313.
[31]N. K. Burgess, M. M. Oliveira, and P. M. Ligrani, 2003, “Nusselt Number Behavior on Deep Dimpled Surfaces With in a Channel,” Journal of Heat Transfer, Vol. 125, pp. 11-18.
[32]N. K. Burgess, and P. M. Ligrani, 2005, “Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors,” Journal of Heat Transfer, Vol. 127, pp. 839-847.
[33]P. M. Ligrani, G. I. Mahmood, J. L. Harrison, C. M. Clayton, and D. L. Nelson, 2001, “Flow Structure and Local Nusselt Number Variations in a Channel with Dimples and Protrusions on opposite Walls,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 4413-4425.
[34]P. M. Ligrani, J. L. Harrison, G. I. Mahmood, and M. L. Hill, 2001, “Flow Structure Due to Dimple Depressions on a Channel Surface,” Physics of Fluids, Vol. 13, No. 11, pp.3442-3451.
[35]H. R. Ei, and C. Antonio, 2008, “Heat Transfer Enhancement of Air Flowing Across Grooved Channels: Joint Effects of Channel Height and Groove Depth,” Journal of Heat Transfer, Vol. 130/021901, PP. 1-7.
[36]A. V. Schukin, A. P. Koslov, and R. S. Agachev, 1995, “Study and Application of Hemispherical Cavities for Surface Heat transfer Augmentation,” ASME Paper No. 95-GT-59, ASME 40th International Gas Turbine and Aero Congress, Houston.
[37]M. K. Chyu, Y. Yu , H. Ding, J. P. Downs, and F. Soechting, 1997, “Concavity Enhanced Heat Transfer in an Internal Cooling Passage,” ASME Paper No.97-GT-437, ASME 42nd International Gas Turbine and Aero Congress, Orlando, FL.
[38]Y. l. Lin, T. I. P. Shih, and M. K. Chyu, 1999, “Computations of Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities,” ASME Paper No.99-GT-263, ASME Turbo Expo, Indianapolis.
[39]H. K. Moon, T. O’Connell, and B. Glezer, 1999, “Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage,” ASME Paper No.99-GT-163, ASME Turbo Expo, Indianapolis.
[40]G. I. Mahmood, M. L. Hill, D. L. Nelson, P. M. Ligrani, H. K. Moon, and B. Glezer, 2000, “Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel,” ASME Turbo Expo, Munich.
[41]P. W. Bearman, and J. K. Harvey, 1993, “Control of Circular Cylinder Flow by the Use of Dimples,” AIAA Journal, Vol. 31, No. 10, pp. 1753-1756.
[42]K. Azar, P. Rodgers, 2001, “Visualization of Air Flows in Electronics System,” Electronics-Cooling, Vol. 7, No. 2, pp. 26-33.
[43]ASHRAE Handbook Fundamental, SI-Edition, 1993, American Society of Heating, Refrigerating and air-conditioning Engineers, Inc. Atlanta, Chap, pp. 14-15.
[44]R. E. Simons, 2003, “Estimating Parallel Plate-Fin Heat Sink Pressure Drop,” Electronics Cooling, Vol. 9, No. 2, pp. 8-10.
[45]W. M. Kays, and A. L. London, 1984, “Compact Heat Exchanger,” 3rd ed. New York: McGraw-Hill.
[46]J. E. Sergent, A. Krum, 1998, “Thermal management Handbook for Electronic Assemblies,” McGraw-Hill, New York.
[47]王啟川,2007,“熱交換設計”,初版,五南圖書出版股份有限公司,台北市,ISBN 98-957-11-4764-2.
[48]R. L. Webb, 1994, “Principles of Enhanced Heat Transfer,” Chap. 3, John Wiley & Sons, Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔