[1]web.sfc.keio.ac.jp/.../architecture/lec01.html
[2]L. A. Nelson, K. S. Sekhon, J. E. Fritz, 1978, “Direct Heat Pipe Cooling of Semiconductor Devices,” Proc. Int. Heat Pipe Conf., 3rd, pp. 373-376.
[3]www.shbear.com/2/lib/200408/20/20040820169.htm
[4]www.dnbsc.com/bbs/topicshow.php?pid=376
[5]A. M. Jacobi, and R. K. Shah, 1995, “Heat Transfer Surfaces Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress,” Experimental Thermal and Fluid Science, Vol. 11, pp. 295-309.
[6]M. Fiebig, 1998, “Vortices Generators and Heat Transfer,” Trans. IchemE, Vol. 76, Part A, pp. 108-123.
[7]C. A. Soule, 2001, “Future Trends in Heat Sink Design,” Electronics Cooling, Vol. 7, No. 1, pp. 18-27.
[8]M. Osterman, 1996, “Technical Brief,” The Institute of Electrical and Electronics Engineers, Vol. 7, No. 1, pp. 53-55.
[9]S. B. Sathe, V. V. Calmidi, and R. J. Stutzman, 2001, “Parameters Affecting Package Thermal Performance-a Low End System Level Example,” Electronics Cooling, Vol. 7, No. 2, pp. 44-51.
[10]D. G. Rich, 1973, “The Effect of Fin Spacing on the Heat Transfer and Fraction Performance of Milti-Row, Smooth Plate Fin-and-Tube Heat Exchangers ,”ASHRAE Transaction, Vol. 81, part 1, pp. 307-312.
[11]A. Achaichia, and T. A. Cowell, 1988, “Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvered Plate Fin Surface,” Experimental Thermal and Fluid Science, Vol. 1, pp.147~157.
[12]江慶銘, 2006, “緻密性堆疊型散熱鰭片在強制對流下之熱流分析,” 元智大學機械工程學系碩士論文。[13]K. S. Yang, C. M. Chiang, Y. T. Lin, K. H. Chien, and C. C. Wang, 2007, “On the Heat Transfer Characteristics of Heat Sinks: With and Without Augmentation,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 2667-2674.
[14]R. L. Webb, and P. Trauger, 1991, “Flow Structure in the Louvered Fin Heat Exchanger Geometry,” Experimental Thermal and Fluid Science, Vol. 4, pp. 25-217.
[15]C. C. Wang, W. S. Lee, and W. J. Sheu, 2001, “A Comparative Study of Compact Enhanced Fin-and-Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, Vol.44, pp. 3565-3573.
[16]鍾志豪, 2007, “堆疊型散熱鰭片在強制對流下之壓降與熱傳分析,” 元智大學機械工程學系碩士論文。[17]E. Thurlow, E. Prather, and V. Mansingh, 2000, “Fan Swirl Effect on Cooling Heat Sink and Electronic Packages,” Sixteenth IEEE SEMI-THERM Symposium, Vol. 1, No. 7, pp. 91-98.
[18]F. J. Edwards, and G. J. Alker, 1974, “The Improvement of Forced Convection Surface Heat Transfer Using Surfaces Protrusions in the Form of (A) Cubes and (B) Vortex Generators,” Proc. 5th International Heat Transfer Conf., Tokyo, Vol. 2, pp. 244-248.
[19]S. Tiggelbeck, N. K. Mitra, and M. Fiebig, 1993, “Experimental Investigation of Heat Transfer Enhancement and Flow Losses in a Channel with Double Rows of Longitudinal Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 36, No. 9, pp. 2327-2337.
[20]S. Tiggelbeck, N. K. Mitra, and M. Fiebig, 1994, “Comparison of Wing-Type Vortex Generators for Heat Transfer Enheacement in Channel Flows,” ASME Journal of Heat Transfer, Vol. 116, pp. 880-885.
[21]G. Biswas, N. K. Mitra, M. Fiebig, 1994, “Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 283-291.
[22]M. Fiebig, A. Valencea, and N. K. Mitra, 1993, “Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers,” Experimental Thermal and Fluid Science, Vol. 7, pp. 287-295.
[23]A. Valencea, M. Fiebig, and N. K. Mitra, 1996, “Heat Transfer Enhancement by Longitudinal Vortices in a Fin-Tube Heat Exchanger Element with Flat Tubes,” ASME Journal of Heat Transfer , Vol. 118, pp. 209-211.
[24]R. Sedney, 1973, “A Survey of the Effects of Small Protuberances on Boundary-Layer Flows,” AIAA Journal, V. 11, pp. 782-792.
[25]M. Fiebig, 1998, “Vortices Generators and Heat Transfer,” Trans. IchemE, V.76, Part A, pp. 108-123.
[26]J. S. Leu, Y. H. Wu and J. Y. Jang, 2004, “Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers with a Pair of Block Shape Vortex Generators,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4327-4338.
[27]T. Tanaka, M. Itoh, T. Hatada, and H. Matsushima, 2003, “Influence of Inclination Angle, Attack Angle, and Arrangement of Rectangular Vortex Generators on Heat Transfer Performance,” Mechanical Engineering Research Laboratory, Hitachi, Ltd. pp. 300-0013.
[28]S. D. Hwang, H. H. Cho, “Heat Transfer Enhancement of Internal Passage Using Dimple/Protrusion,” HTE-24.
[29]Y. O. Lee, J. Ahn, J. C. Sung, and J. C. Lee, “Large Eddy Simulation of Turbulent Heat Transfer in a Dimpled Channel,” TRB-24.
[30]H. K. Moon, T. O. Connell, and B. Glezer, 2000, “Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage,” Journal of Engineering for Gas Turbines and Power, Vol. 122, pp. 307-313.
[31]N. K. Burgess, M. M. Oliveira, and P. M. Ligrani, 2003, “Nusselt Number Behavior on Deep Dimpled Surfaces With in a Channel,” Journal of Heat Transfer, Vol. 125, pp. 11-18.
[32]N. K. Burgess, and P. M. Ligrani, 2005, “Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors,” Journal of Heat Transfer, Vol. 127, pp. 839-847.
[33]P. M. Ligrani, G. I. Mahmood, J. L. Harrison, C. M. Clayton, and D. L. Nelson, 2001, “Flow Structure and Local Nusselt Number Variations in a Channel with Dimples and Protrusions on opposite Walls,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 4413-4425.
[34]P. M. Ligrani, J. L. Harrison, G. I. Mahmood, and M. L. Hill, 2001, “Flow Structure Due to Dimple Depressions on a Channel Surface,” Physics of Fluids, Vol. 13, No. 11, pp.3442-3451.
[35]H. R. Ei, and C. Antonio, 2008, “Heat Transfer Enhancement of Air Flowing Across Grooved Channels: Joint Effects of Channel Height and Groove Depth,” Journal of Heat Transfer, Vol. 130/021901, PP. 1-7.
[36]A. V. Schukin, A. P. Koslov, and R. S. Agachev, 1995, “Study and Application of Hemispherical Cavities for Surface Heat transfer Augmentation,” ASME Paper No. 95-GT-59, ASME 40th International Gas Turbine and Aero Congress, Houston.
[37]M. K. Chyu, Y. Yu , H. Ding, J. P. Downs, and F. Soechting, 1997, “Concavity Enhanced Heat Transfer in an Internal Cooling Passage,” ASME Paper No.97-GT-437, ASME 42nd International Gas Turbine and Aero Congress, Orlando, FL.
[38]Y. l. Lin, T. I. P. Shih, and M. K. Chyu, 1999, “Computations of Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities,” ASME Paper No.99-GT-263, ASME Turbo Expo, Indianapolis.
[39]H. K. Moon, T. O’Connell, and B. Glezer, 1999, “Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage,” ASME Paper No.99-GT-163, ASME Turbo Expo, Indianapolis.
[40]G. I. Mahmood, M. L. Hill, D. L. Nelson, P. M. Ligrani, H. K. Moon, and B. Glezer, 2000, “Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel,” ASME Turbo Expo, Munich.
[41]P. W. Bearman, and J. K. Harvey, 1993, “Control of Circular Cylinder Flow by the Use of Dimples,” AIAA Journal, Vol. 31, No. 10, pp. 1753-1756.
[42]K. Azar, P. Rodgers, 2001, “Visualization of Air Flows in Electronics System,” Electronics-Cooling, Vol. 7, No. 2, pp. 26-33.
[43]ASHRAE Handbook Fundamental, SI-Edition, 1993, American Society of Heating, Refrigerating and air-conditioning Engineers, Inc. Atlanta, Chap, pp. 14-15.
[44]R. E. Simons, 2003, “Estimating Parallel Plate-Fin Heat Sink Pressure Drop,” Electronics Cooling, Vol. 9, No. 2, pp. 8-10.
[45]W. M. Kays, and A. L. London, 1984, “Compact Heat Exchanger,” 3rd ed. New York: McGraw-Hill.
[46]J. E. Sergent, A. Krum, 1998, “Thermal management Handbook for Electronic Assemblies,” McGraw-Hill, New York.
[47]王啟川,2007,“熱交換設計”,初版,五南圖書出版股份有限公司,台北市,ISBN 98-957-11-4764-2.
[48]R. L. Webb, 1994, “Principles of Enhanced Heat Transfer,” Chap. 3, John Wiley & Sons, Inc.