跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林靖凱
研究生(外文):Jing-Kae Lin
論文名稱:藉由鋼纜微振訊息診斷斜張橋異常靜荷載之研究
論文名稱(外文):The Study of the Cable-stayed Bridges Subject to Unusual Static Loads through Ambient Signal of Cable Vibration
指導教授:陳建州陳建州引用關係林主潔林主潔引用關係
指導教授(外文):Chien-Chou ChenJay-Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:239
中文關鍵詞:集鹿斜張橋類神經網路微振訊號斜張鋼纜
外文關鍵詞:Ambient VibrationStay CableCNeural Network
相關次數:
  • 被引用被引用:3
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
鋼纜為斜張橋的主要受力構件,力量傳遞的必經途徑,橋體結構狀態因故發生變化,均會造成鋼纜索力的改變,因此,索力的變化可視為橋體狀態改變的重要指標。鋼纜因具有相當大的細長比,其振動頻率因此與內部索力息息相關,又鋼纜頻率的識別相對於主梁簡易,故藉由量測鋼纜的微振訊號,以求取斜張橋鋼纜的索力值,進而分析橋體的內應力狀態,並評估是否構件發生損傷,為斜張橋結構安全性評估的可行方式之一。本研究即藉由鋼纜微振訊號診斷斜張橋異常靜荷重之來源與程度,相關研究主要包含構件損傷敏感分析、異常荷載對鋼纜微振訊號的影響分析及訓練與測試倒傳遞類神經網路識別差異沉陷與非預測主梁靜荷重等靜態異常荷載之可行性。
To provide a supporting system for cable-stayed bridges, cable system always plays a decisive role among structural components. Thus, the internal force of cable system becomes an important as well as practical target being monitored because its change provides the profound information in diagnosing the unusual change of the structural system of cable-stayed bridges. In addition, in comparison with girder component, stay-cable component possesses larger slender ratio, which makes its ambient vibration more apparent and easy to be measured. Accordingly, it should be possible to develop the method for the evaluation of the structural safety of cable-stayed bridges, which mainly makes use of the measured ambient signal of cable vibration for the calculation of internal force of cable system, for the analysis of stress condition of bridge structure and for the damage recognition of structural components. In this study, the ambient signal of cable vibration was used to recognize the source and degree of unusual static load acting on cable-stayed bridges. At first, a sensitive study was performed to figure out the variation of cable force owing to several assumed damage types. Then, the structural analysis was made to point out the main difference of cable force as unusual static loads occur. Finally, a neural network was trained and tested to recognize the source and degree of the static loads.
中文摘要.......................i
英文摘要......................ii
誌謝.........................iii
目錄..........................iv
表目錄.......................vii
圖目錄.......................xii
符號說明...................xxiii
第一章 緒論..........................1
1.1研究背景與動機....................1
1.2研究目的與範圍....................2
1.3文獻回顧..........................3
1.4研究方法與流程....................7
第二章 斜張鋼纜振動特性..............11
2.1 概述 ............................11
2.2斜張鋼纜構件組成..................11
2.3斜張鋼纜的受力行為與分析模擬......13
2.4斜張鋼纜的振動分析................15
2.5斜張鋼纜索力之量測分析............19
2.6小結..............................23

第三章 異常加載或構件損傷之索力變化..26
3.1概述..............................26
3.2結構分析模型......................26
3.3橋體外加荷重......................28
3.4鋼纜系統索力變化特徵..............30
3.5環境背景資料量測分析..............33
3.6橋體震損之索力變化................40
3.7小結..............................43
第四章 倒傳遞類神經網路..............117
4.1類神經網路簡述....................117
4.2倒傳遞類神經網路..................119
4.3倒傳遞演算法的選擇與網路的架構....123
4.4類神經網路訓練與測試資料..........127
4.5 MATLAB之介紹.....................129
第五章 模擬診斷範例-集鹿斜張橋.......146
5.1訓練與測試數據的生成............. 146
5.2數據的準確性與可識別性說明........147
5.3單根鋼纜索力加入誤差量之網路識別的準確性與可識別性.................................150
5.4改變多根鋼纜改變量網路識別的準確性與可識別性....................................152
5.5模擬訊號消失與識別效果的準確性與可識別性....................................156
5.6識別效果的探討.....................157

第六章 結論與後續研究......205
6.1結論....................205
6.2後續研究................206
參考文獻...................207
[1] 蘇慧,龔維明,梁書亭,中國工程科學,2006年07期。
[2] 「高屏溪橋」,高屏溪橋專輯,國道新建工程局 (2001)。
[3] 「東西向快速公路漢寶草屯線跨越貓羅溪鋼拱塔斜張橋動力特性之監測與分析─研究計畫」,結案報告,公路總局 (2005)。
[4] 孫宗光,高贊明,倪一清(2004) , ”基於神經網絡的橋梁損傷位置識別”,工程力學期刊,第21卷,第1期,pp.42-47。
[5] SAP2000結構設計實務(V8&V9),科技圖書。
[6] Sohn, Hoon (2003) “A review of structural health monitoring literature”,Proceedings of the Third World Conference on Structural Control. Vol.2., pp. 1996-2001.
[7] Andrea Del Grosso, Daniele Inaudi, and Livia Pardi (2002),“Overview of European Activities in the Health Monitoring of Bridges”, First International Conference on Bridge Maintenance, Safety and Management,2002 July, pp.14-17.
[8] Rytter, A. (1993),“Vibration Based Inspection of Civil Engineering Structures”, PH. D. Dissertation, Dept. of Building Technology and Structural Eng., Aalborg University, Denmark.
[9] 李有豐,林安彥(2000),”橋梁檢測與補強”,全華科技圖書股份有限公司。
[10] Doebling, S.W., and C.R. Farrar (1997),“Using Statistical Analysis to Enhance Modal-Based Damage Identification”, in Structural Damage Assessment Using Advanced Signal Processing Procedures, Proceedings of DAMAS ’97, University of Sheffield, UK, pp.199 210.
[11] Doebling, S.W., C.R. Farrar, M.B. Prime, and DW. Shevitz (1996), “Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review,” Los Alamos National Laboratory report LA-13070-MS.
[12] Friswell, M.I. and Penny, J.E.T. (1997),“Is Damage Location Using Vibration Measurements Practical?”, Structural Damage Assessment Using Advanced Signal Processing Procedures, Proceedings of DAMAS ’97, University of Sheffield, UK, pp.351-362.
[13] Aktan, A.E., Catbas, F.N., Grimmelsman, K.A., and Tsikos, C.J.(2000), “Issues in Infrastructure Health Monitoring for Management”, Journal of Engineering Mechanics, Vol. 126, No. 7,pp. 711-724.
[14] Zheng-Kuan Lee, Tzu-Hsiu Wu and Chin-Hsiung Loh(2003),“System Indentification on the Seismic Behavior of an Isolated Bridge”, Earthquake Engng Struct. Dyn..
[15] Q. Qin, H. B. Li, L.Z. Qian and C.-K. Lau(2001),“Modal Identification of Tsing Ma Bridge by Using Improved Eigensystem Realization Algorithm”, Journal of Sound and Vibration, Vol.247, No.2, pp.325- 341.
[16] J. Chen, Y. L. Xu, R. C. Zhang(2004),“Modal Parameter Identification of Tsing Ma Suspension Bridge under Typhoon Victor: EMD-HT Method”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.92 805-827.
[17] Darby J. Luscher, James M. W. Brownjohn, Hoon Sohn, and Charies R. Farrar(2001),“MODAL PARAMETER EXTRACTION OF z24 BRIDGE DATA” , the 19th International Modal Analysis Conference, Orlando, FL., USA, February 5-8.
[18] C. R. Farrar and G. H. James Ⅲ(1997),“System Identification from Ambient Vibration Measurements on a Bridge”, Journal of Sound and Vibration, Vol. 205(1), pp. 1-18.
[19] 唐治平,高介任(1980),”橋梁非線性結構系統識別”,中國土木水利工程學刊第二卷,第三期。
[20] Geoff Burrell(2003),“Verification of Structural Health Monitoring Technique on a Cable-Stayed Bridge”, Final Report, NSF REU Program in Structural Engineering., Structural Control and Earthquake Engineering Laboratory, Washington University in St. Louis.
[21] Natke, H.G., and Cempel, C. (1997),“Model-Aided Diagnosis Based on Symptoms”, Structural Damage Assessment Using Advanced Signal Processing Procedures, Proceedings of DAMAS ’97, University of Sheffield, UK, pp. 363-375.
[22] Maeck, J., and De Roeck, G. (1999),“Damage Detection on a Prestressed Concrete Bridge and RC Beams Using Dynamic System Identification”, Damage Assessment of Structures, Proceedings of the International Conference on Damage Assessment of Structures (DAMAS 99), Dublin, Ireland, pp.320-327.
[23] Zhao Ling, Li Aiqun, Miao Changqing and Wang Yonglan (2006),“Damage Detection for Long-Span Cable-Stayed Bridge”,西南交通大學學報(英文版),第1期。
[24] 張清華,李喬(2006), ”斜拉橋結構損傷定位的組合敏感指標法”,振動與沖擊期刊,第3期。
[25] 孫宗光,倪一清,高贊明,丁皓江(2003) ,”基於斜拉索振動測量與神經網絡技術的斜拉橋損傷位置識別方法”,工程力學期刊,第3期。
[26] Chan, T.H., Ni, Y.Q., and Ko, J.M.(1999),“Neural Network Novelty Filtering for Anomaly Detection of Tsing Ma Bridge Cables”, Structural Health Monitoring 2000, Stanford University, Palo Alto, California, USA, pp. 430-439.
[27] Liu, P.L., and Sun, S.C.(1997),“The Application of Artificial Neural Networks on the Health Monitoring of Bridges”, Structural Health Monitoring, Current Status and Perspectives, Stanford University, Palo Alto, California, USA, pp.103-110.
[28] Barai, S.V., and Pandey, P.C.(1997),“Time-Delay Neural Networks in Damage Detection of Railway Bridges”, Advances in Engineering Software, Vol. 28, pp.1-10.
[29] 朱宏平,千力,ZHU Hong-ping,QIAN Li(2005),”利用振動模態測量值和神經網絡方法的結構損傷識別研究”,計算力學學報,第2期。
[30] 李忠獻,楊曉明,丁陽(2003),”應用人工神經網絡技術的大型斜拉橋子結構損傷識別研究”,地震工程與工程振動期刊,第3期。
[31] 張剛剛,王春生,徐岳,ZHANG Gang-gang, WANG Chun-sheng, XU Yue(2006),”基於徑向基函數神經網絡的斜拉橋損傷識別”,長安大學學報(自然科學版),第1期。
[32] 楊杰,李愛群,繆長青,Yang Jie, Li Aiqun, Miao Changqing (2005),”BP神經網絡在大跨斜拉橋的斜拉索損傷識別中的應用”,土木工程學報,第5期。
[33] Adeli, H.,"Neural networks in civil engineering: 1989-2000,"Computer-Aided Civil and Infrastructure Engineering, Vol. 16,pp.126-142. , (2001).
[34] Ghaboussi, J. and Lin, C-C. J.“A New Method of Generating Earthquake Accelerograms Using Neural Networks” International Journal for Earthquake Engineering and Structural Dynamics, Vol.27, Issue4, 377-396,(1998).
[35] Lin, C-C. J., and Ghaboussi, J.“Generating Multiple Spectrum Compatible Accelerograms Using Stochastic Neural Networks”, International Journal for Earthquake Engineering and Structural Dynamics, Vol.30, Issue7, 377-396,(2001).
[36] Ghaboussi, J., (1994),“Some applications of Neural Networks in Structural Engineering”,Proceedings of the 11th Conference on Analysis and Computation Atlanta,ASCE,pp.25-36.
[37] 周智傑,2004,“集鹿大橋震害評估與修復之研究”,國立台灣大學, 碩士論文。
[38] 李晉全,2006,“集鹿斜張橋震後修復內應力狀態解析之研究”,國立雲林科技大學,碩士論文。
[39] 林元培,「斜拉橋」,大陸:人民交通出版社,第31-32頁(1994)
[40] Gimsing, N.J., “Cable Supported Bridge-concept &Design,” 2nd ed., John Wiley & Sous (1997).
[41] Wezel, H., “Cable Stayed Bridge-History, Design,Application,” Northern Gate Book Co. (1998).
[42] 蔡俊鐿,「斜張橋」,科技圖書股份有限公司 (1999)。
[43] 林樹柱,「預力混凝土設計及施工」,大中國圖書公司(1986)。
[44] 李政寬、陳建州、周智傑、張國鎮,「斜張鋼纜微振訊號有限元素法解析」,中國土木水利工程學刊,第18卷,第2期。
[45] 陳建州、李政寬、周智傑、張國鎮,「斜張鋼纜索力分析之參數研究」,中國土木水利工程學刊,第18卷,第4期。
[46] 陳建州、吳文華,「經由鋼纜微振訊號進行斜張橋健康診斷之研究」
[47] 交通部,2001,“公路橋梁設計規範”,幼獅文化事業股份有限公司。
[48] 交通部,2000,“公路橋梁耐震設計規範”,幼獅文化事業股份有限公司。
[49] McCulloch W. S., Pitts W. " A Logical Calculus of the Ideas Immanent in Nervous Activity" Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.
[50] Hebb, D.O. (1949). The organization of behavior. New York: Wiley.
[51] Rosenblatt. F, 1958, “The Perceptron:A Probabilistic Model for Information Storage and Organization in the Brain”, Psychological , Review, Vol. 65, pp. 386-408.
[52] Rumelhart, D. E., Hinton, D. E. and Williams, R. J. “Learning Internal Representations byError Propagation in Parallel Distributed Processing”, MIT Press, Cambridge, MA, 1986,pp.318-362.
[53] 張斐章、張麗秋編著,類神經網路,東華書局。(2005)
[54] 施柏屹,「倒傳遞類神經網路學習收歛之初步探討」-國立中央大學 機械工程研究所,中壢市,(2000)。
[55] Lin, C-C. J.“A Neural Network Based Methodology for Generating Spectrum Compatible Earthquake Accelerograms”, Ph.D. thesis, Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, Dec.(1990).
[56] 羅華強編著,類神經網路─MATLAB的應用,高立圖書有限公司,(2005)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top