跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳維泰
研究生(外文):Wei-tai Chen
論文名稱:台灣中海拔BVOCs排放通量量測及環境因子相關性之研究
論文名稱(外文):A study of BVOCs flux measurements and its environmental factors at middle altitud in Taiwan
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):Chu-chin Hsieh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:119
中文關鍵詞:污染係數多泵隨意渦旋累積法垂直梯度法渦旋擴散係數
外文關鍵詞:vertical gradientpollution coefficieneddy diffusivity coefficient
相關次數:
  • 被引用被引用:4
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:1
由於揮發性有機物(volatile organic compounds, VOCs)為空氣污染物臭氧生成的前驅物,而植物所排放之揮發性有機物(biogenic vocs, BVOCs)的速率除會受到環境因子的影響外,也與植物種類的不同而異,因此對於總BVOCs總量的推算實為不易,一般常應用微氣象法量測BVOCs之排放通量,因此本研究則採用微氣象法中的隨意渦旋累積法(multi- pumps relaxed eddy accumulation, MPREA)及垂直梯度法(vertical gradient‚ VG)進行BVOCs量測,透過二種不同的量測技術證明彼此的穩定性,並推算及評估VG法所求得渦旋擴散係數(eddy diffusivity coefficient, K)之合理性,以通量(flux)來表示所量測之BVOCs總量,推算影響範圍(effective fetch)來評估所量測到BOVCs之貢獻來源範圍,於二個不同季節進行BVOCs量測,並配合溫度、濕度、光照度等環境因子解析其排放率,量測地點為人為污染少的中海拔區域,此海拔範圍除涵蓋針、闊葉林相外,台灣80%以上的生物源物種皆於此區域出現。
經由MPREA與VG推算之渦旋擴散係數(eddy diffusivity coefficient, K)結果顯示,推算之K值並符合文獻所提出之範圍,而不同採樣點所推算之K值有其相異處,推測由不同土地型態所造成之影響,其日、夜所推算之K值亦有其差異。進行BVOCs實測前,先推算此採樣地點所能量測之影響範圍及污染係數(pollution coefficient),評估所量測物種可能來源方向及距離。在中海拔BVOCs量測結果顯示,白天及夜間之累積通量和分別為2434與1150 (mg m-2 h-1),其白天通量和約高於夜間2倍,顯示白天之光照度與溫度的升高對BVOCs排放具有顯著影響。而冬季與春季之累積通量分別為425與823 (mg m-2 h-1),冬季通量總和約為春季之半,顯示季節明顯影響BVOCs之排放趨勢,而採樣點之特徵物種,量測結果顯示以已醛(Hexanal)為主,其符合主要林相之茶樹(C. Sinensis)所排放物種。
經物種出現頻率分析得知,Isoprene、MACR與MVK之出現頻率與物種通量高低具有相同趨勢,當物種出現頻率增多時,所量測之通量較高,而β-pinene與Heptanone之通量高低與出現頻率則呈現相反之趨勢,β-pinene春季出現頻率較冬季高約2倍,而其物種通量春季則較冬季減少約50%。 環境因子與物種之相關性評估後,顯示Isoprene與MACR對光照度有良好相關性,而溫度則對α-pinene具有顯著影響。另外物種間之相關性分析發現,物種間之相關性以其物化特性為影響主因。
Student:Wei-tai Chen
Advisor:Chu-chin Hsieh

Volatile organic compounds (VOCs) are one of ozone formation precursors and the rate of emission of biogenic VOCs (BVOCs) by vegetation would be affected by environmental parameters, and the flux would also vary with different plant species. Two micrometeorological techniques, multi-pumps relaxed eddy accumulation (MPREA) and vertical gradient (VG), are developed to measure the flux of BVOCs at altitude of 1200-m in mid-Taiwan. Moreover, the results of MPREA and VG could confirm with each other for attesting to the system’s stability. Eddy diffusivity coefficient (EDC) at atmosphere is calculated by VG and proved its rationality. The range of effective fetch at the sampling site is estimated using the available equations to evaluate the influence area of this study. The BVOC flux measured at two different seasons are related well with environmental parameters including temperature, humidity, and photosyn- thetically active radiation (PAR).
EDC calculated using Valentine approach integrated with the results of MPREA and VG. EDC vary with time and locations due to different environment factors. The result of EDC measured in this study is similar to that of the previous studies. At middle altitudes of 1200-m, the flux of BVOCs measured at day and night are different, the BVOCs flux is 2434 and 1150 (mg m-2 h-1) in day and night, respectively. The BVOCs flux of day is two times higher than that of night because the emissions of BVOCs would raise with temperature and PAR. The flux of BVOCs in spring and winter are 823 and 425 (mg m-2 h-1), respectively. The flux of spring is 2 times higher than that of winter. We conjecture that hexanal, the major species of BVOCs, is emitted by C. Sinensis.
The detection frequency of Isoprene, MACR and MVK have the positive correlate with their flux value. The higher emission frequency of the BVOCs indicate the higher flux of the BVOCs, but β-pinene and Heptanone show opposite correlation. The emission frequency of β-pinene detected in spring indicate 2 times higher than that in winter, but its flux in spring is 2 times lower than in winter. After correlation analysis of environmental factors and species, the result shows that the isoprene and MACR have the better relativity with PAR, and temperature would affect the flux of α-pinene.
中文摘要........................................i
英文摘要......................................iii
致謝............................................v
目錄...........................................vi
表目錄.........................................ix
圖目錄.........................................xi
符號說明......................................xiv

第一章 前言.....................................1
1.1 研究緣起....................................1
1.2 研究目的....................................2

第二章 文獻回顧.................................3
2.1 自然源之種類及特性..........................3
2.1.1環境影響因子...............................5
2.1.2 海拔與林相關係............................7
2.2 微氣象量測技術 .............................10
2.2.1 渦旋共變異法(eddy covariance, EC)......11
2.2.2 隨意渦旋累積法(relaxed eddy accumulation‚
REA)....................................12
2.2.3 多泵隨意渦旋累積法(multi-pumps relaxed
eddy accumulation, MPREA)...............13
2.2.4 垂直梯度法(vertical gradient‚ VG)......16
2.2.5 K值之範圍................................24
2.3 微氣象法量測BVOCs通量之應用................25
2.4 大氣穩定度之判斷...........................26
2.4.1大氣穩定度與b值關係.......................27
2.5 影響範圍(effective fetch)推算............29

第三章 研究方法................................33
3.1 研究流程...................................33
3.2 採樣地點選擇...............................34
3.2.1 採樣點A(雲科大電子環安館)..............34
3.2.2 採樣點B(碧湖茶園)......................36
3.3 採樣設備...................................38
3.3.1 MPREA系統單元............................38
3.3.2 其他設備.................................42
3.3.3 採樣介質選擇 .............................44
3.4 分析儀器和偵測物種.........................46
3.4.1偵測物種..................................46
3.4.2 分析儀器.................................47
3.4.3 檢量線製備...............................48
3.4.4 方法偵測極限(MDL)......................49
3.4.5 準確度及精確度...........................49

第四章 結果與討論..............................51
4.1 系統測試與K值推算..........................51
4.1.1 MPREA系統測試............................51
4.1.2 K值推算結果..............................52
4.1.3 K值與大氣穩定度..........................55
4.2 影響範圍推算...............................56
4.2.1 污染係數(pollution coefficient)推算....58
4.3 K值與b值之分析.............................61
4.3.1 通量與b值關係............................63
4.4 BVOCs通量及趨勢............................65
4.4.1 各採樣日BVOCs通量趨勢....................68
4.4.2 物種出現頻率分析.........................71
4.4.3 BVOCs季節及日夜通量分析..................77
4.4.4 環境因子與BVOCs相關性....................81
4.4.5 物種相關性評估...........................90

第五章 結論與建議..............................92
5.1 結論.......................................92
5.2 建議.......................................93

第六章 參考文獻................................94
Ausma, Edwards, G. C., Wong, E. K., Gillespie, T. J., Fitzgerald-Hubble, C. R., Halfpenny-Mitchell, L. and Mortimer, W. P., “A micrometeorological technique to monitor total hydrocarbon emissions from to Landfarms to the atmosphere”, J. Environ. Qual, Vol. 30, pp. 776 –785, (2001).
Arya, S. P., “Large-eddy simulations of the atmospheric boundary layer using a new subgrid-scale model – II. weakly and moderately stable cases”, Environmental Fluid Mechanics, Vol. 1, pp. 49-69, (2001).
Ammann, C., “On the applicability of relaxed eddy accumulation and common methods for measuring trace gas surface fluxes”, Zürcher Geopgraphische Schriften, ETH Zürich, pp. 1-50, (1998).
Baraldi, R. et al., “Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees, Phys”, Chem. Earth (B), Vol. 24, No. 6, pp. 729-732, (1999).
Bai, J., Baker, B., Liang, B., Greenberg, J., Guenther, A., “Isoprene and monoterpene emissions from an Inner Mongolia grassland”, Atmospheric Environment, Vol. 40, pp. 5753-5758, (2006).
Bao, H., Kondo, A., Kaga, A., Tada, M., Sakaguti, K., Inoue, Y., Shimoda, Y., Narumi, D., Machimura, T., “Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan”, Environmental Research, Vol. 106, pp. 156-169, (2008).
Businger, J. A., and Oncley, S. P., “Flux measurement with conditional sampling”, Journal of Atmospheric and Oceanic Technology, Vol. 7, pp. 349-352, (1990).
Baker, J. M, Norman, J. M. and Bland, W. L., “Field-scale application of flux measurement by conditional sampling”, Agricultural and Forest Meteorology, Vol. 62, pp. 31-52, (1992).
Beverland, I. J., Oeil, D. H., Scott, S. L., Moncrief, J. B., “Design construction and operaton of flux measurement system using the conditional sampling technique”, Atmospheric Environment, Vol. 30, pp. 3209-3220, (1996).
Chris G., Alex G., Jim G., Thomas K., Rei R., “Biogenic volatile organic compound emissions from desert vegetation of the southwestern US”, Atmospheric Environment, Vol. 40, pp. 1645-1660, (2006).
Darmais, S., Dutaur, L., Cieslik, B. L. S., Simon, L. L. V. and L. Torres, “Emission fluxes of VOC by orange trees determined by both relaxed eddy accumulation and vertical gradient approaches”, Chemosphere: Global Change Science, Vol. 2, pp. 47-56, (2000).
Darmais, S., Dutaur, L., Cieslik, B. L. S., Simon, L. L. V., Torres, L., “Emission fluxes of VOC by orange trees determined by both relaxed eddy accumulation and vertical gradient approaches”, Chemosphere: Global Change Science, Vol. 2, pp. 47-56, (2000).
Davis, K. J., Lenschow, D. H., Zimmerman, P. R.., “Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations”, Journal of Geophysical Research Vol. 99, pp. 25587-25598, (1994).
Fisher, B., Kukkonen, J., Piringer, M., Rotach, M. W., and Schatzmann, M., “Meteorology applied to urban air pollution problems: concepts from COST 715”, Atmos. Chem. Phys., Vol. 6, pp. 555-564, (2006).
Gao, W., “The vertical change of coefficient b, used in the relaxed eddy accumulation method for flux measurement above and within a forest canopy”, Atmospheric Environment, Vol. 29 (17), pp.2339-2347, (1995).
Gao, Z., Bian, L. and Liu, S., “Flux measurements in the near surface layer over a non-uniform crop surface in China”, Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 1067-1085. (2005).
Golder, D., “Relations among stability parameters in the surface layer”, Boundary-Layer Meteorology, Vol. 3, pp. 47-58, (1972).
Hakola, H., Laurila, T., “The ambient concentrations of biogenic hydrocarbons at a northern European”, Atmospheric Environment, Vol. 34, pp. 4971-4982, (2000).
Horticultural Abstracts, Vol. 72, pp. 9489, (2002).
Hannele, H., Tuomas, L., Janne, R., Katri, P., “The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site”, Atmospheric Environment Vol. 34, pp. 4971-4982, (2000).
Hakola, H., Tarvainen, V., Back, J., Ranta, H., Bonn, B., Rinne, J., and Kulmala, M., “Seasonal variation of mono- and sesquiterpene emission rates of Scots pine”, Biogeosciences Discussions, Vol. 2, pp. 1697-1717, (2005).
Hai Bao, Akira Kondo, Akikazu Kaga, Masaharu Tada, Katsutoshi Sakaguti, Yoshio Inoue, Yoshiyuki Shimoda, Daisuke Narumi, Takashi Machimura, “Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan”, Environmental Research, Vol, 106, pp. 156-169, (2008).
Richardson, L. F., “The supply of energy from and to atmospheric eddies”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 97, 354-373, (1920).
Ruuskanen, T.M., H. Hakola, M.K. Kajos, H. Helle, V. Tarvainen, J. Rinne, “Volatile organic compound emissions from Siberian larch”, Atmospheric Environment, Vol. 41 pp. 5807-5812, (2007).
Jianhui, B., Bradly, B., Baosheng, L., James, G., Alex, G., “Isoprene and monoterpene emissions from an Inner Mongolia grassland”, Atmospheric Environment, Vol, 40, pp. 5753-5758, (2006).
Kesselmeier, J., Bode, K., “Biological knowledge needed for the measurement and interpretation of exchange processes between plants and the atmosphere, In: Helas, G.,Slanina, J., Steinbrecher, R. (Eds.), Biogenic Volatile Organic Compounds in the Atmosphere”, SPB Academic Publishing BV, Amsterdam, The Netherlands, pp. 9-25, (1997).
Liakakou, E., Vrekoussis, M., Bonsang, B., Donousis, Ch., Kanakidou, M., Mihalopoulos, N., “Isoprene above the Eastern Mediterranean: Seasonal variation and contribution to the oxidation capacity of the atmosphere”, Atmospheric Environment, Vol. 41, pp. 1002-1010, (2007).
Li, D. W., Shi, Y., He, X. Y., Chen, W., Chen, X., “Volatile organic compound emissions from urban trees in Shenyang”, Botanical Studies, Vol. 49, pp. 67-72, China, (2008).
Nunes, T. V., Pio, C. A., “Emission of volatile organic compounds from portuguese eucalyptus forests”, Chemosphere - Global Change Science, Vol. 3, pp. 239-248, (2001).
Ohmura, A., Desjardins, R. L., Meixner, F. X., Rotach, M., “On the applicability of relaxed eddy accumulation and common methods for measuring trace gas surface fluxes”, (1998).
Pattey, E., Cessna, A. J., Desjardins, R. L., Kerr, L. A., Rochette, P., St-Amour, G., Zhu, T. and Feadrick, K., “Herbicides volatilization mesured by relaxed eddy-accumulation technique using two trapping media”, Agricultural and Forest Meteorology, Vol. 76, pp. 201-220, (1995).
Plate, E. J., “Aerodynamic characteristics of atmospheric boundary layers”, ACE Crit. Rev. Ser. TID-15465, Technical information center, US Department of Energy, (1971).
Pattey, E., Desjardins, R. L., Westberg, H., Lamb, B., Zhu, T., “Measurement of isoprene emissions over a black spruce stand using a tower-based relaxed eddy-accumulation system”, Journal of Applied Meteorology, Vol. 38, (1999).
Petelski, T., “Marine aerosol fluxes over open sea calculated from vertical concentration gradients”, Journal of Aerosol Science, Vol. 34, pp. 359-371, (2002).
Pasquill, F., Smith, F. B., “Eddy coefficients for vertical diffusion in the neutral surface layer”, Boundary-Layer Meteorology, Vol. 7, pp. 227-228, (1974).
Prabir, K. P., and Shyam, L.,“Variability of eddy diffusivity in the stratosphere deduced from vertical distributions of N2O and CFC-12”, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 59, pp. 1149-1157, (1997).
Shoji HATTORI, “Study of new approach for evaluation of Japanese green tea using OASIS method”, Memoirs of the Faculty of Agriculture, Hokkaido University, Vol. 28, pp. 85-120, (2006).
Su, H. J., “Studies on the climate and vegeation type of the natural forest in Taiwan (Ⅱ)”, Altitudinal vegetation zones in relation to temperature gradient. Quart. Journ. Chin. Forest. Vol. 17, pp. 57-73, (1984).
Stanhill, G., “A simple instrument for field measurement of turbulent diffusion flux”, J. Appl. Meteorol, pp. 509-513, (1969).
Smith, M., H., Park, P. M., Consterdine, I. E., “Marine aerosol concentrations and estimated fluxes over the sea”, Quarterly Journal of Royal Meteorological Society, Vol. 119, pp. 809-824, (1993).
Schuepp, P. H., “Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation”, Boundary Layer Meteorol. Vol. 50, pp. 355-373, (1990).
Valentini, R., Greco, S., Seufert, G.., “Fluxes of biogenic VOCs from Mediterranean vegetation by trap enrichment relaxed eddy accumulation”, Atmospheric Environment, Vol. 31, pp. 229-238, (1997).
Wilske, B., Cao, K.-F., Schebeske, G.., Chen, J.-W., Wang, A., Kesselmeier, J., “Isoprenoid emissions of trees in a tropical rainforest in Xishuangbanna, SW China”, Atmospheric Environment, Vol. 41, pp. 3748-3757, (2007).
Wyngaard, J. C. and Moeng, C.H., “Parameterizing turbulent diffusion through joint probability functon”, Boundary layer Meteorology, Vol. 60, pp. 1-13, (1992).
吳泄澤,“本土性樹種揮發性有機物排放係數與環境因子影響之研究”,國立雲林科技大學環境與安全衛生研究所碩士論文,2000。
游榮華,“植物排放自然源揮發性有機物與大氣組成成份特徵之研究”,國立雲林科技大學環境與安全衛生研究所碩士論文,2001。
王明鍵,“以微氣象法量測大氣微量氣體通量之建立與驗證”,國立雲林科技大學環境與安全衛生研究所碩士論文,2003。
張勝捷,“台灣地區生物源空氣污染物排放通量之量測與模式驗證”,國立雲林科技大學環境與安全衛生研究所碩士論文,2003。
許智傑,“運用微氣象法量測柳杉、檳榔與楓香之生物源VOCs通量之研究”,國立雲林科技大學環境與安全衛生研究所碩士論文,2006。
林宗廷,“揮發性有機物風軸採樣系統開發與應用”,國立雲林科技大學環境與安全衛生研究所碩士論文,2007。
方偉德,“大氣與森林之間紊流流場之風洞實驗”,國立中央大學土木工程研究所碩士論文,2004。
行政院環境保護署空氣污染排放清冊,TEDS6.1,2003。
吳麗珠、吳榮泰,“Tenax-TA熱脫附分析方法驗證與現場應用探討”, 行政院勞工委員會勞工安全衛生研究所,1999。
徐森雄,“不同土壤之地溫、水分與熱流之變化”,作物、環境與生物資訊,第2卷,第201-210頁,2005。
陳朝圳、吳守從、江彥鋒,“應用MODIS衛星影像推估台灣地區之蒸發散量”,台灣林業科學,第249-61頁,2006。
上虞國際大酒店建設項目環境影響報告表,浙江大學,2002。
林遠欽,“欣賞森林之美-臺灣山林遊”,科學知識,第49期,第1-10頁,1999 。
林國彰,“台灣森林多樣性之經營”,台灣林業,第二十九卷,第三期,2003。
吳富春、沈易徵,“水田微氣候模式之建立與應用”,農業工程學報,第48期,第10-23頁,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊