(34.204.186.91) 您好!臺灣時間:2021/04/19 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林湘嵐
研究生(外文):Hsiand-Lan Lin
論文名稱:以乙酸及丙酸加強馴養之生物污泥生產PHAs(polyhydroxyalkanoates)之研究
論文名稱(外文):Production of polyhydroxyalkanoates by activated sludge acclimated to acetate and propionate
指導教授:張維欽張維欽引用關係
指導教授(外文):Wei-Chin Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:121
中文關鍵詞:生物分解性塑膠
外文關鍵詞:polyhydroxyalkanoates
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物合成之PHAs(Polyhydroxyalkanoates)具有與一般塑膠(尤其PE與PP)相近之物性,且可於環境中完全分解,但PHAs於實廠量產之程序上多採用純種培養,其生產成本甚高,故目前正積極探討混種培養生產PHAs之可行性。厭氧好氧活性污泥系統具有PHAs生成菌之混種培養選種功能,惟該污泥系統為一複雜之菌群結構,並同時含有相當量之非PHAs生成菌。因此本研究嘗試以乙酸為基質加強馴養厭氧好氧活性污泥系統之生物污泥,藉以降低複雜基質在厭氧段之發酵需求,進而提升系統中PHAs生成菌比例,再將其生物污泥於好氧態下進行一系列PHAs生產批次實驗。然此結果雖有高PHAs產量,但其PHAs結構仍以PHB為主。當以相同污泥,進行以丙酸為外部碳源之PHAs生產實驗時,雖可提升PHV組成比例,但PHAs產量甚低。因此本研究另嘗試以丙酸加強馴養之生物污泥,進行以丙酸為外部碳源之PHAs生產實驗,以期同時提高PHAs產量及PHV含量。
實驗結果發現以乙酸加強馴養之生物污泥,進行以乙酸為外部碳源之PHAs生產實驗時,短SRT (5天)操作所馴養之生物污泥,其PHAs產量較長SRT (15天)者為高。以相同污泥進行不同外部碳源之PHAs生產實驗時,不論外部碳源為乙酸或丙酸,兩者均在COD = 4000 mg/L時,PHAs含量為最高,且以乙酸為外部碳源之PHAs生產實驗所獲致之PHAs含量、生產率及基質轉換率,都較以丙酸為外部碳源時為高。此外,以乙酸為外部碳源生產之PHAs成分多以PHB為主,PHV含量甚低;而以丙酸為外部碳源之PHAs生產實驗時,其PHAs形式則為PHB、PHV及3H2MV,其中又以PHV居多,顯示丙酸為外部碳源,確能提升PHV含量,但整體PHAs產量(8%)則仍甚低。
為同時提升PHAs產量及PHV含量,故將厭氧好氧活性生物污泥系統之進流基質由乙酸轉為丙酸,並於基質適應期間取其生物污泥進行PHAs生產實驗,實驗結果發現須經長期馴養(兩倍SRT左右,約30天),使其族群轉換,才可同時提升PHAs產量及PHV含量。然以丙酸加強馴養之生物污泥,進行以丙酸為外部碳源之PHAs生產實驗時,其最大PHAs含量(12%)、生產率(10.13 mg C/ g SS/h)及基質轉換率(0.15 C-mole/C-mole)仍較以乙酸加強馴養之生物污泥,進行以乙酸為外部碳源之PHAs生產實驗時為低(最大PHAs含量(41%)、生產率(32.58 mg C/ g SS/h)及基質轉換率(0.61 C-mole/C-mole))。
Polyhydroxyalkanoates (PHAs) are synthesized biopolymers that have typical properties similar to those of thermoplastics (such as PE and PP). PHAs can be complete biodegraded in environment. But the industrial processes of PHAs production are based on the use of pure cultures, and their production costs are high. Therefore, interests in the use of mixed cultures for the production of polyhydroxyalkanoates has increased in the recent years. The anaerobic-aerobic mixed cultures process can select PHAs producting bacteria; however, this system is so complicated that it contains a great deal of non-PHAs producting bacteria. In this study, the acetate-fed A/O activated sludge system was constructed, which can reduce complicated fermention requirement in anaerobic period, and promote the proportion of PHAs producting bacteria. Then, sludge from the aerobic zone of the system was harvested to proceed aerobic batch experiments for PHAs production. Although this experimental result has demonstrated maximum PHAs content, the main structure of PHAs is still based on PHB. When feeding propionate to the same sludge to proceed batch experiments, proportion of PHV was raised, but PHAs content was low. Thus, this research attempted to use propionate to acclimate activated sludge, hoping to elevate PHAs content and PHV proportion at the same time.
The experimental results indicated that the PHAs production capability for activated sludge system with an short SRT(5 days) was better than that of the sludge with an long SRT(15 days), when using acetate-fed activated sludge and using acetate as carbon source for batch experiment of PHAs production. No matter the carbon source was acetate or propionate, the maximium PHAs content were obtained when the carbon source was COD = 4000 mg/L. The PHAs content, production rate and conversion ratio obtained with acetate were higher than the ones obtained with propionate. Furthermore, use of acetate as carbon source led to the production of PHB, and use of propionate as carbon source led to the production of PHB, PHV, 3H2MV and among them mostly PHV. This results showed that use of propionate as carbon source can improve PHV content, but that still have low PHAs content (8%).
Acetate fed to the A/O activated sludge system was changed to propionate in order to improve PHAs content and PHV proportion at the same time. This sludge in adapted period were utilized to perform batch experiment of PHAs production. Experimental results showed that PHAs producting bacteria need a long adaption time (about 30 days) to improve PHAs content and PHV proportion at the same time. When using propionate-fed activated sludge and using propionate as carbon source to proceed batch experiment for PHAs production, experimental results showed that the highest amount of PHAs content 12%, production rate 8.3 mg C/g SS/h and conversion ratio 0.20 C-mole/C-mole. These production properties were lower than the ones obtained with activated sludge fed with acetate (PHAs content (41%), production rate (32.58 mg C/g SS/h) and conversion ratio (0.61 C-mole/C-mole)).
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
1.Anderson AJ, Dawes EA. "Occurrence, metabolism, metabolic role and industrial uses of bacterial PHA." Microbiol Rev 1990;54:450-72.
2.Beccari M, Majone M, Massanisso P, Ramadori R. "A bulking sludge with high storage response selected under intermittent feeding." Water Res 1998;32:3403-13.
3.Beun JJ, Paletta F, Van Loosdrecht MCM, Heijnen JJ. "Stoichiometry and kinetics of polyhydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures." Biotechnol Bioeng 2000a;67:379-89.
4.Beun JJ, Paletta F, Van Loosdrecht MCM, Heijnen JJ. "Stoichiometry and kinetics of polyhydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures." Biotechnol Bioeng 2000b;68:496-507.
5.Beun JJ, Dirks K, Van Loosdrecht MCM, Heijnen JJ. "Poly-(hydroxybutyrate) metabolism in dynamically fed mixed microbial cultures." Water Res 2002;36:1167-80.
6.Brandl H, Gross RA, Lenz RW, Fuller RC. "Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters." App Environ Microbiol 1988;54:1977-1982.
7.Braunegg G, Lefebvre G, Genser KF. "Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects." J Biotechnol 1998;65:127-61.
8.Brdjanovic D, Van Loosdrecht MCM, Hooijmans CM, Mino T, Alaerts GJ, Heijnen JJ. "Effect of polyphosphate limitation on the anaerobic metabolism of phosphorus accumulating microorganisms." Appl Microbiol Biotechnol 1998;50:273-6.
9.Chau H, Yu PHF. "Production of biodegradable plastics from chemical wastewater: a treatment." Water Sci Technol 1999;39:273-80.
10.Chen Y.G., Yang H.Z., Gu G.W. "Effects of Biological Treatment Process of Waste Water on Microorganism Intracellular PHA ." Chemical Industry and Engineering Progress 2000;19(5):36 – 39
11.Chua ASM, Takabatake H, Satoh H, Mino T. "Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent." Water Res 2003;37:3602-3611.
12.Comeau Y, Hall KJ, Oldham WK. "Determination of Poly-β-hydroxybutyrate and Poly-β-hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography." Appl Environ Microbiol 1988;54:2325-2327.
13.Dias ML, Lemos PC, Serafim LS, Cristina Oliveira, Marta Eiroa, Maria G. E. Albuquerque, Ana M. Ramos, Rui Oliveira, Maria A. M. Reis. "Recent Advances in Polyhydroxyalkanoate Production by Mixed Aerobic Cultures: From the Substrate to the Final Product." Macromol Biosci 2006;6:885-906
14.Dionisi D, Majone M, Ramadori R, Beccari M. "The storage of acetate under anoxic conditions." Water Res 2001a;35:2661-8.
15.Doi Y, Tamaki A, Kunioka M, Soga K. "Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids." Appl Microbiol Biotechnol 1988;28: 330-334.
16.Filipe CDM, Daigger GT, Leslie Grady CP. "A metabolic model for acetate uptake under anaerobic condition by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH." Biotechnol Bioeng 2001a;76:17-31.
17.Fleit, E. "Intracellular pH regulation in biological excess phosphorus removal systems." Water Res 1995; 29(7):1787-1792.
18.Fukase J, Shibate M, Miyaji Y. "Factors Affecting Biological Removal of Phosphorus" Wat Sci Technol 1985;17,Paris:73 - 87.
19.Henze M, Gujer W, Mino T, Matsuo T, Wentzel MC, Marais GVR. "Activated sludge model no.2." IAWQ Scientific and Tech 1994; Rep. No.3, IAWQ, London, U.K.
20.Herbert D, Phipps PJ, Strange RE. "Chemical analysis of microbial cells–Carbohydrate analysis" In: Methods in Microbiology, J. R. Norris and D. W. Ribbons(ed) 1971;vol. 5B:265-280.
21.Holmes PA. "Biologically produced PHA polymers and copolymers. In: Bassett DC, editor." Development in crystalline polymers, vol. 2. London: Elsevier; 1988;1-65.
22.Hood, C.R., Randall, A.A. "A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates. " Water Res 2001;35:2758-2766.
23.Hu WF, Chua H, Yu PHF. "Synthesis of poly-(hydroxy butyrate-co-hydroxyvalerate) from activated sludge." Biotechnol Lett 1997;19:695-8.
24.Huang, J., Shetty, A. S., and Wang, M. "Biodegradable Plastics: A Review." Advances in Polymer Technology 1990;10(1), 23-30.
25.Kasemsap, C., Wantawin, C. "Batch production of polyhydroxyalkanoate by low-polyphosphate-content activated sludge at varying pH." Bioresource Technology 2006;1-8
26.Kim BS, Lee SC, Lee SY, Chang YK, Woo SI. "Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alkaligenes eutrophus with glucose concentration control. " Biotechnol Bioeng 1994;19:892-8.
27.Lafferty, R. M., Korsatko, B., and Korsatko, W. "Microbial Production of Poly-hydroxybutyric Acid." Biotechnology 1988;135-176.
28.Lee SY, Chang HN. "Effect of complex nitrogen source on the synthesis and accumulation of poly(3-hydroxybutyric acid) by recombinant Escherichia coli in flask and fedbatch cultures." J Environ Polym Degrad 1994;2:169-76.
29.Lee SY,Chang HN. "Production of poly-(hydroxyalkanoic acid)." Adv Biochem Eng Biotechnol 1995;52:27-58.
30.Lee SY, Choi J. "Production and degradation of polyhydroxyalkanoates in waste environment." Waste Management 1999;19:133- 139.
31.Lee SY. "Plastic bacteria? Progress and prospects for polyhydroxyalkanoates production in bacteria." TIBTECH 1996;14:431-8.
32.Lemos PC, Serafim LS, Santos MM, Reis MA, Santos H. "Metabolic pathway for propionate utilization by phosphorus-accumulating organisms in activated sludge: 13C labeling and in vivo nuclear magnetic resonance." Appl Environ Microbiol 2003; 69:241-51.
33.Lemos PC, Serafim LS, Reis MA. "Polyhydroxyalkanoates production by activated sludge in a SBR using acetate and propionate as carbon sources." Water Sci Technol 2004;50:189-94.
34.Lemos, P.C., Serafim, L.S., Reis, M.A.M. "Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding" Journal of Biotechnology 2006.; 122, 226-238
35.Levantesi, C., Serafim, L.S., Crocetti, G.R., Lemos, P.C., Rossetti, S., Blackall, L.L., Reis, M.A.M, Tandoi, V. 2002 "Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor." Environ. Microbiol.; 4:559-569.
36.Liu WT, Mino T, Nkamura K, Matsuo T. "Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in an anaerobic- aerobic activated sludge with minimized polyphosphate content." Ferment Bioeng 1994;77:535-40.
37.Liu WT, Mino T, Nakamura K, Matsuo T. "Glycogen accumulating population and its anaerobic substrate uptake in anaerobic – aerobic activated sludge without biological phosphate removal." Water Res 1996;30:75-82.
38.Liu WT, Nakamura K, Matsuo T, Mino T. "Internal energy based competition between polyphosphate and glycogen accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio." Water Res 1997;31:1430-8.
39.Liu, Y., Geiger, C., Randall, A.A. "The role of poly-hydroxy-alkanoate form in determining the response of enhanced biological phosphorus removal biomass to volatile fatty acids." Water Environ Res 2002;74:57-67.
40.Matsuo T. "Effect of the anaerobic SRT on enhanced biological phosphorus removal." Water Sci Technol 1994;30:193-202.
41.Maurer M, Gujer W, Hang R, Bachman S. "Intracellular carbon flow in phosphorus accumulating organisms from sludge systems." Water Res 1997;31:907-17.
42.Mino T, Kawakami T, Matsuo T. "Behaviour of Interacellular Polyphosphate In The Biological Phosphate Removal Process" Wat Sci Technol 1985;17,Paris:11-21.
43.Mino T, Tsuzuki Y, Matsuo T. "Effect of phosphorus accumulation on acetate metabolism in biological phosphorus removal process. In: Ramadori R, editor. Proceedings IAWPRC Int Conf on biological phosphate removal from wastewaters." Adv Wat Pollut Cont. London: Pergamon; 1987. p. 27-38.
44.Mino T, Liu WT, Satoh H, Matsuo T. "Possible metabolism of polyphosphate accumulating organisms (PAOs) and glycogen non accumulating organisms (GAOs) in enhanced biological phosphate removal process." Proceedings 10th Forum Appl Biotechnol Brugge, Belgium 1996;1769-76.
45.Mino T, Van Loosdrecht MCM, Heijnen JJ. "Microbiology and biochemistry of enhanced biological phosphate removal process." Water Res 1998;32:3193-207.
46.Ojumu TV, Yu J, Solomon BO. "Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer." African Journal of Biotechnology 2004;3(1):18-24.
47.Pereira H, Lemos PC, Reis MAM, Crespo JPSG, Carrondo MJT, Santos H. "Model for carbon metabolism in biological phosphorus removal process based on in vivo C-NMR labeling experiments." Water Res 1996;30:2128-38.
48.Poirier Y, Nawrath C, Somerville C. "Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants." Biotechnology 1995;13:142-50.
49.Ramadori R. "Biological Phosphate Removal from Wastewaters." Pergamon Press, New York, 1987.
50.Saito Y, Soejima T, Tomozawa T, Doi Y, Kiya F. "Production of biodegradable plastics from volatile acids using activated sludge." Environ Systems Eng 1995;52:145-54.
51.Salehizadeh H, Van Loosdrecht MCM. "Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance." Biotechnology Advances 2004;22:261-279.
52.Satoh H, Mino T, Matsuo T. "Uptake of organic substrate and accumulation of poly hydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in biological excess phosphorus removal process." Water Sci Technol 1992;26:933-42.
53.Satoh H, Mino T, Matsuo T. "Deterioration of enhanced biological phosphorus removal by the domination microorganisms without polyphosphate accumulation." Water Sci Technol 1994;3:203-11.
54.Satoh H, Iwamoto Y, Mino T, Matsuo T. "Activated sludge as a possible source of biodegradable plastic." Water Sci Technol 1998a;38:103-9.
55.Satoh H, Mino T, Matsuo T. "Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge." Water Sci Technol 1998b;37:579-82.
56.Serafim LS, Lemos PC, Oliveira R Maria AM. "Optimization of Polyhydroxybutyrate Production by Mixed Cultures Submitted to Aerobic Dynamic Feeding Conditions" Wiley Periodicals 2004;87, 145-160.
57.Smolders, G.L.F., van der Meij, J., van Loosdrecht, M. C. M. and Heijnen, J. J. "Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence." Biotechnol Bioeng 1994;43, 461-470.
58.Sudesh K, Abe H, Doi Y. "Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters." Prog Polym Sci 2000;25:1503-1555.
59.Sudiana IM, Mino T, Satoh H, Nakamura K, Matsuo T. "Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source." Wat Sci Technol 1999;39(6):29-35.
60.Takabatake H, Satoh H, Mino T, Matsuo T. "Recovery of biodegradable plastic from activated sludge process." Water Sci Technol 2000;42:351-6.
61.Takabatake H, Satoh H, Mino T, Matsuo T. "PHA production potential of activated sludge treating wastewater." Water Sci Technol 2002;45:119-26.
62.Tohyama M, Patarinska T, Qiang Z, Shimizu K. "Modeling of mixed culture and periodic control for PHB production." Biotechnol Eng 2002;10:157-73.
63.Tsunemasa N. "Utilization of excess sludge for the production of biodegradable plastics." Water Waste 1998;40:981-6 [in Japanese].
64.Ueno T, Satoh H, Mino T, Matsuo T. "Production of biodegradable plastics." Polym Preprint 1993;42:981-6 [In Japanese].
65.Van-Aalst van Leeuwen MA, Pot MA, Van Loosdrecht MCM. "Kinetic modeling of poly-(hydroxyalkanoate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply." Biotechnol Bioeng 1997;55:773-82.
66.Van Loosdercht MCM, Heijnen JJ. "Modeling of activated sludge processes with structured biomass." Water Sci Technol 2002;45:13-23.
67.Van Loosdrecht MCM, Pot MA, Heijnen JJ. "Importance of bacterial storage polymers in bioprocess." Water Sci Technol 1997;35:41-7.
68.Wang F, Lee SY. "Poly(3-hydroxybutyrate) production with high polymer content by fed-batch culture of Alkaligenes latus under nitrogen limitation." Appl Environ Microbiol 1997;63:3703-6.
69.Wentzel MC, Lotter LH, Ekama GA, Loewenthal RE, Marais GA. "Evaluation of Biological Model for Biological Excess Phosphorus Removal." Wat Sci Technol 1991;23,Kyoto:567-576.
70.Yu Dai, Zhiguo Yuan, Kevin Jack, Jurg Keller. " Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source." Journal of Biotechnology 2007;129, 489-497
71.莊仲揚 "聚羥基烷酯(PHA)發展現況" 化工資訊與商情,工業技術研究院出版。2003;7(1):36-44。
72. 郭人豪"廢棄生物污泥生產PHAs (polyhydroxyalkanoates)之最適操作條件探討" 碩士論文,國立雲林科技大學環境與安全工程研究所。2006。
73. 許嘉文"不同外部碳源對廢棄生物污泥生產PHAs (polyhydroxyalkanoates)之影響" 碩士論文,國立雲林科技大學環境與安全工程研究所。2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔