跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 02:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐士涵
研究生(外文):Shih-Han Hsu
論文名稱:利用連續影像之車牌定位及超高解析度方法來增強車牌影像的可分辨度
論文名稱(外文):A Method of Incerasing the Definition of Vehicle License Plate (VLP) Image Using Techniques of VLP Localization and Super Resolution From Sequence of Images.
指導教授:林啟芳
指導教授(外文):Chi-Fang Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:53
中文關鍵詞:車牌定位移動物體偵測陰影偵測超高解析度方法
外文關鍵詞:License Plate LocationMotion DetectionShadow DetectionSuper Resolution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:2
本論文提出了一個整合超高解析度的車牌定位方法,利用連續影像的特性,首先使用陰影偵測演算法將車輛定位出來,再利用回歸方程算出車輛路徑,並以型態學的方式得到可能的車牌區域,沒有正確定位出的車牌或定位錯誤的區塊,透過車輛路徑來估測可能位置,進而讓影片中車牌影像能成為連續的一直線,最後以連續車牌影像套用超高解析度方法,得出一高解析度影像。
This study proposes a method of super-resolution integrated License plate localization. By using the attributes of sequence of images. First, locate the vehicle by the shadow detection algorithm, second, compute the moving path by linear regression equation, and then locate the license plate by morphological gradient. Finally, by the sequence of plate images apply to super-resolution algorithm, then we could acquire a high resolution image.
目錄
中文摘要 .iii
英文摘要 .iv
致謝 ..v
目錄 ..vi
圖目錄 .vii
第一章 序論 ...1
1.1 動機 ...1
1.2 車牌定位與辨識的相關研究 ...2
1.3 超高解析度的相關研究 ...4
1.4 所提方法概述 ...6
1.5 論文架構 ...7
第二章 系統流程與超高解析度方法 ...8
2.1 處理流程介紹 ...8
2.2 超高解析度方法介紹 .11
第三章 所提方法 .14
3.1 車輛定位 .14
3.1.1 陰影偵測 .14
3.1.2 區別陰影區域 .17
3.1.3 過濾車輛影像 19
3.1.4 車輛行進路徑計算 21
3.2 汽車車牌定位 22
3.2.1 車牌框選 22
3.3 接合車牌成高解析影像 26
3.3.1 接合 26
3.3.2 資料的取樣分析與影響 27
3.3.3 車牌張數與數據分析 28
第四章 實驗結果 33
4.1 實驗設備與環境 33
4.2 實驗結果 34
第五章 結論與未來研究 50
5.1 結論 50
5.2 未來研究 50
參考文獻 51
[1]中華民國統計資訊網 [Online]. Available: http://www.stat.gov.tw/
[2]Danian Zheng, Yannan Zhao, and Jiaxin Wang, “An efficient method of license plate location,” Pattern Recognition Letter , Vol. 26, Issue 15, pp. 2431-2438, Nov. 2005.
[3]Jun-Wei Hsieh, Shih-Hao Yu, and Yung-Sheng Chen, “Morphology-based license plate detection in images of differently illuminated and oriented cars,” Journal of Electronic Imaging, Vol. 11, No. 4, pp. 507-516, 2002.
[4]Mei Yu and Yong Deak Kim, “An approach to Korean license plate recognition based on vertical edge matching,” IEEE International Conference on System, Man, and Cybernetics 2000, Vol. 4, pp. 2975-2980, 2000.
[5]R. Bremananth, Dr. A. Chitra, Vivek Seetharaman, and Vidya Sudhan L. Nathan, “A robust video based license plate recognition system,” International Conference on Intelligent Sensing and Information Processing, ICISIP, Vol. 2005, Jan., pp. 175-180, 2005.
[6]Hongliang Bai, Junmin Zhu, and Changping Liu,“A fast license plate extraction method on complex background,” IEEE Proceeding of Intelligent Transportation systems, Vol. 2, pp. 985-987, 2003.
[7]Feng Yang, and Zheng Ma, “Vehicle license plate location based on histogramming and mathematical morphology,” 4th IEEE Workshop on Automatic Identification Advanced Technologies, Vol. 2005, pp. 89-94, 2005.
[8]Farhad Faradji, Amir Hossein Rezaie, and Majid Ziaratban, “A morphological-based license plate location,” IEEE International Conference on Image Processing, ICIP 2007, Vol. 1, pp. 57-60, 2007.

[9]Kuo-Ming Hung, Hsiang-Lin Chuang, and Ching-Tang Hsieh, “License plate detection based on expanded haar wavelet transform,” 4th International Conference on Fuzzy systems and knowledge Discovery, Vol. 4, pp. 415-419, 2007.
[10]S. H. Park, K. I. Kim, K. Jung, and H. J. Kim, “Locating car license plates using neural networks,” 19th Electronics Letters, Vol. 35, Issue. 17, pp. 1475-1477, Aug. 1999.
[11]陳麗奾,「在未設限環境下車牌定位與辨識」,師範大學資訊教育研究所,碩士論文,民國88年。
[12]S. Baker and T. Kanade, “Super-resolution image reconstrution: a technical overview,” IEEE Signal Processing Magazine, pp. 21-36, May 2003.
[13]B. Bascle, A. Blake, and A. Zisserman, “Motion deblurring and super-resolution from an image sequence,” Proc. European Conf. Computer Vision, Vol. 2, pp. 573-582, 1996.
[14]R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-resolution image estimation using a sequence of undersampled images,” IEEE Trans. Image Process., Vol. 6, No. 12, pp. 1621–1633, Dec. 1997.
[15]A. J. Patti, M. I. Sezan, and A. M. Tekalp, “Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Transactions on Image Processing, Vol. 6, pp. 1064-1076, 1997.
[16]M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process., Vol. 6, No. 12, pp. 1646–1658, Dec. 1997.
[17]M. Elad and A. Feuer, “Super-resolution restoration of an image sequence: Adaptive filtering approach,” IEEE Trans. Image Process., Vol. 8, No. 3, pp. 387–395, Mar. 1999.
[18]Michael Elad, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Processing, Vol. 10, No. 8, Aug. 2001.
[19]William T. Freeman, Thouis R. Jones, and Egon C. Pasztor, “Example-based super-resolution,” Computer Graphics and Applications, Vol. 22, Issue 2 , 2002.
[20]M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graphical Models Image Process., Vol. 53, pp. 231–239, Mar. 1991.
[21]Sina Farsiu and M. Dirk Robinson, “Fast and robust multiframe super resolution,” IEEE Trans. Image Processing, Vol. 13, No. 10, Oct. 2004.
[22]N. K. Bose, H. C. Kim, and H. M. Valenzuela, “Recurcive implementation of total least squares algorithm for image reconstruction from, noisy, undersampled multiframes,” Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Vol. 5, pp. 269–272, Minneapolis, MN, Apr. 1993.
[23]N. Nguyen, P. Milanfar, and G. H. Golub, “A computationally efficient image superresolution algorithm,” IEEE Trans. Image Processing, Vol. 10, pp. 573–583, Apr. 2001.
[24]R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with HSV Color Information,” Proc. IEEE Int’l Conf. Intelligent Transportation Systems, pp. 334-339, Aug. 2001.
[25]J. Stauder, R.Mech, and J. Ostermann, “Detection of moving cast shadows for object segmentation,” IEEE Transactions on Multimedia, Vol. 1, No. 1, pp. 65-67, Mar. 1999.
[26]N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
[27]梁旻,「利用連續影像進行車牌定位」,元智大學資訊工程研究所,碩士論文,民國96年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top