跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇盈嘉
研究生(外文):Yin-Chia Su
論文名稱:不同運動模式下呼吸防護具之呼吸壓阻與流場特性
論文名稱(外文):Investigation of Breathing Resistance and Aerodynamic Behaviors with Respirators under Different Realistic Breathing Patterns
指導教授:李峻溪李峻溪引用關係
指導教授(外文):Chun-Chi Li
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:機械工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:多孔性Forchheimer方程式空氣年齡壓降額外呼吸功
外文關鍵詞:porousForchheimer’s equationair agepressure dropextra breathing work
相關次數:
  • 被引用被引用:5
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文目標為運用不同運動模式之實驗、煙線流場可視化技術與數值模擬對62A式濾毒罐和N95口罩之氣動力特性進行研究。主要探討圓孔式主、次篩隔板形狀改變與減少活性碳層厚度等幾何參數對壓降及額外呼吸功的影響。
現計有7種量測模型,其進口速度曲線乃之前依各種運動水準所量測的真實呼吸曲線所評估之。統御方程式乃利用三維穩態雷諾均值那維爾-史托克方程式並加入低雷諾數-紊流模式。其中動量方程式的源項以Forchheimer方程式呈現濾毒罐之雙多孔介質層,其改良後之濾毒罐以純量方程式嵌入統御方程式之平均空氣年齡判斷吸附時間是否合乎標準。
研究結果顯示,Model G在進氣量30 L/min的條件下,可降低原型罐的壓阻約43 %。而在重負荷運動狀態時,模擬結果顯示Model D的壓阻與額外呼吸功較原型罐降低約45 %。主、次篩板的蜂巢結構設計能達成降低呼吸壓阻、罐重的輕量化目標。
另N95口罩量測模型。在中度運動條件的呼吸模式下,N95口罩最高吸氣阻抗達59.3Pa左右,約為輕度運動的2倍,為休息條件下的3.85倍;最高額外呼吸功約為輕度運動的3.98倍,約為休息時的14.6倍左右。呼氣時,最高呼氣阻抗達60.1Pa左右,約為輕度運動的1.89倍,為休息條件下的3.6倍;最高額外呼吸功約為輕度運動的3.54倍,為休息條件下的12.66倍。
The aim of this thesis is to investigate the aerodynamic performance of a 62A canister and a N95 gas masker under different levels of exercise with experimental flow visualization technique and numerical simulations.The major objective of this work is to explore the effects of geometrical parameters as the changing of shape of holes in the main and sub sieve diaphragm and the thickness of activated carbon layer on the pressure drop and extra breathing work.
There are seven tested models in present work.The inlet velocity profiles with respect to various exercise levels are evaluated from the real breathing pattern measured in advance. The governing equations are three-dimensional steady-state Reynolds-averaged Navier-Stokes equation incorporated with the low Reynolds number κ-ε turbulence model. The source term in momentum equation to treat the double porous layers in canister is modeling with Forchheimer equation.The quality criteria on the modified canister absorb certain amount of toxic gases is the mean air age calculated from the scalar equation embedded in the governing equations.
Results indicate that the model G can reduce the pressure drop about 43% as compared with that of original model under constant flow rate of 30L/min. For condition of heavy exercise, simulation results show that the both the pressure drop and the extra breathing work of model D can be reduced to 45% of its original design model. Generally, the honeycomb hole shape design in sieve diagraph can achieve the goals of light weight and less pressure drop as expect.
The simulation results reveal that the maximum inspiratory resistance for N95 under moderate exercise is 59.3 Pa, which is two times of that of light activity and 3.85 times of that of resting condition. In addition, the maximum extra work of breathing for moderate exercise is 3.98 times of light activity and 14.6 times of that of resting condition. The maximum expiratory resistance for N95 respirators under moderate exercise is 60.1 Pa, which is 1.89 times of that of light activity and 3.6 times of that of resting condition. In addition, the maximum extra work of breathing for moderate exercise is 3.54 times of that of light activity and 12.66 times of that of resting condition.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xiv
1. 緒論 1
2. 研究內容 7
2.1 呼吸防護具原理說明 7
2.1.1 濾毒罐 7
2.1.2 N95口罩 8
2.2 多孔性介質理論 9
2.3 空氣年齡 10
2.4 呼吸模式 11
2.5 文獻回顧 14
2.6 研究程序 17
3. 研究方法 18
3.1 物理模型介紹 18
3.1.1濾毒罐(圓孔式主篩板) 18
3.1.2濾毒罐(蜂巢式主篩板) 19
3.1.3 N95口罩 25
3.2 研究矩陣 26
3.2.1 濾毒罐 26
3.2.2 N95口罩 27
3.3 實驗量測 27
3.3.1 壓降量測實驗 27
3.3.2 流場可視化實驗 28
3.4 數值模擬 31
3.4.1 統御方程式 31
3.4.2 網格系統 33
3.4.3 數值方法 38
3.4.4 邊界條件 38
4. 結果與討論 40
4.1 濾毒罐 40
4.1.1 濾毒罐之多孔性介質參數決定 40
4.1.2 不同模型之呼吸阻抗比較 41
4.1.3 濾毒罐空罐體流場可視化觀測與模擬 43
4.1.4 主篩板孔洞面積與分佈效應 45
4.1.5 空氣年齡 57
4.1.6 呼吸模式 63
4.2 N95口罩 78
4.2.1 口罩之多孔性介質參數決定 78
4.2.3 口罩之呼吸模式 82
結論與建議 87
5.1 結論 87
5.2 未來展望與建議 89
參考文獻 91
附錄1 空氣年齡C語言副程式 94
附錄2 Zhang休息狀態C語言副程式 95
附錄3 Zhang輕度運動C語言副程式 96
附錄4 Zhang中度運動C語言副程式 97
附錄5 T3-75與Model A之休息狀態C語言副程式 98
附錄6 T3-75與Model A之輕度運動狀態C語言副程式 99
附錄7 T3-75與 Model A之中度運動狀態C語言副程式 100
附錄8 T3-75與 Model A之重度運動狀態C語言副程式 101
附錄9 T3-75與 Model A之激烈運動狀態C語言副程式 102
附錄10 T3-75與 Model D之休息狀態C語言副程式 103
附錄11 T3-75與 Model D之輕度運動狀態C語言副程式 104
附錄12 T3-75與 Model D之中度運動狀態C語言副程式 105
附錄13 T3-75與 Model D之重度運動狀態C語言副程式 106
附錄14 T3-75與 Model D之激烈運動狀態C語言副程式 107
自傳 108
[1]C. Li, “Aerodynamic behavior of a gas mask canister containing two porous media,” Chemical Engineering Science,2009.
[2]李峻溪、廖坤俊,“三維濾毒罐幾何構型與吸附能力分析之流場模擬”,國防
大學理工學院兵器系統工程研究所碩士論文,2007。
[3]Zhang, Z., Kleinstreuer, C., & Kim C.S. “Gas–solid two-phase flow in a triple bifurcation lung airway model,” International Journal of Multiphase flow, vol.28, pp.1021-1046,2002.
[4]E. Weibel, “Morphometry of the human lung,” Anesthesiology, vol.26, p.367,1965.
[5]C. Li, C. Wang, “Establishment of the Realistic Breathing Patterns in Different Exercise Conditions by Experimental Measurement,” International Conference on Computational & Experimental Engineering and Sciences,2009.
[6]http://hineteos.myweb.hinet.net/main.htm
[7]代友紅、李俊善,“降低防毒面具吸氣阻力研究”,中國個體防護裝備雜誌
第五期,2006。
[8]邱舜、黃玉成,“拋棄式口罩面面觀”,感染控制雜誌,第13卷第4期,2006。
[9]劉宣良、許家銘,“口罩與過濾”,科學發展雜誌,第368期,2003。
[10]Andrada. Jr., J. S., Costa, U. M. S., Almeida, M. P., Makse, H. A., & Stanley, H. E., “ Inertial effects on fluid flow through disordered porous media,” Physical Review Letters, vol.82(26), pp.5249-5252,1999.
[11]Teng, H., Zhao, T. S., “An Extension of Darcy’s Law to Non-Stokes Flow in Porous Media,” Chemical Engineering Science, vol.55, pp.2727-2735,2000.
[12]Antohe, B. V. and Lage J. L., “A General Two-equation Macroscopic Turbulence Model for Incompressible Flow in Porous Media,” International Journal Heat Mass Transfer, vol.40, No.13, pp.3013-3024,1997.
[13]Subrenat, A., Baléo, J. N., & Le Cloirec, P. “Analysis of pressure drops in pleated activated carbon cloth filters,” Journal of Enviromental Engineering, vol.156(6), pp.562-568,2000.
[14]Subrenat, A., Bellettre, J., & Le Cloirec, P. “3-D numerical simulations of flow in a cylindrical pleated filter packed with activated carbon cloth,” Chemical Engineering Science, vol.58, pp.4965-4973,2003.
[15]Baleo, J. N., Subrenat, A., Cloirec, P. L., “Numerical Simulation of Flows in Air Treatment Devices using Activated Carbon Cloths Filters,” Chemical Engineering Science, vol.55, pp.1807-1816, 2000.
[16]Pavageau, M., Coq. L. L., Mabit, J., Solliec, C., “About the Applicability of Commonly Used Pressure-Flow Models to Plane Single-Layer Filters of Activated Carbon Fabric,” Chemical Engineering Science, vol.55, pp.2699-2712, 2000.
[17]Thomas, D., Contal, P., Renaudin, Penicot, P., Leclerc, D., Vendel, J., “Modelling Pressure Drop in Hepa Filters During Dynamic Filtration,” J. Aesosol Sci., vol.30, No. 2, pp235-246, 1999.
[18]王鋒、王向方,“過濾式防毒面具對生理機能的影響與調適”,解放軍體育學院學報,第二二卷第四期,七六至七八頁,2003。
[19]賈銳、陳華斌、鄺特煥,“某部防毒面具綜合症的調查”,解放軍預防醫學雜誌,第十三卷第三期、201~202頁,1995。
[20]賈銳、陳華斌、鄺特煥,“防毒面具綜合症30例報告”,人民軍醫,第三期、
7~8頁,1995。
[21]R. Heus, E. A. d. Hartog, L. J. A. Kistemaker, W. J. v. Dijk, and G. Swenker, “Influence of inspiratory resistance on performance during draded exercise tests on a cycle ergometer,” Applied Ergonomics, vol. 35, pp. 583-590,2004.
[22]http://www.newport.com/Lasers/default.aspx?lang=1033
[23]邱曼、劉寶龍、劉志強,“自吸過濾式呼吸護用品對人體影響的探討”,中國
個體防護裝備雜誌,第四期,2008。
[24]International Standards Organization(ISO), “ISO8996:Ergonomics-Determination of metabolic heat production”,1990,Geneva.
[25]http://www.jesseshunting.com/gas-masks.html
[26]http://en.wikipedia.org/wiki/XM50_JSGPM
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top