跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐陽寬
研究生(外文):Ouyang, Kwan
論文名稱:減阻參數穩健設計應用於具微氣泡液態紊流邊界層之研究
論文名稱(外文):Study on Robust Design of Drag-Reduction Parameters Appling to Liquid Turbulent Boundary Layer with Microbubbles
指導教授:吳聖儒吳聖儒引用關係夏曉文夏曉文引用關係
指導教授(外文):Wu, Sheng-JuShiah, Sheau-Wen
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:150
中文關鍵詞:氣泡減阻穩健設計田口方法電化學產氣數值模擬
外文關鍵詞:drag-reduction by bubblesrobust designTaguchi methodbubble generation by electrochemistrynumerical simulation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一流線形化的水中載具運動時所遭遇的阻力主要為表面摩擦阻力,若能降低載具的摩擦阻力,將能減少水中載具的能源消耗並提升其運動速度。本論文主要目的在獲得有關氣泡減阻的穩健參數設計,以實驗及數值方法探討微氣泡空氣薄膜在渠道內流場或潛體外流場的減阻,並使用田口直交表法檢驗因子及其水準對減阻效率的影響,以獲得最佳穩健參數水準組合。本研究分成三部分,分別為微氣泡於渠道紊流場的減阻實驗、電化學產氣裝置應用於潛體的減阻實驗,以及空氣薄膜於渠道紊流場的數值模擬。
在微氣泡於渠道紊流場的減阻實驗中,採用高壓空氣通過孔隙介質的方式產生微氣泡,以降低渠道上壁面的表面摩擦阻力,所探討的控制因子有氣泡粒徑尺寸、供氣面積以及空氣供氣率,並將流場速度視為標示因子。根據變異數分析結果,三個控制因子中以空氣供氣率對減阻效率的影響最鉅。實驗結果也顯示流速對減阻效果亦有很大的影響,在低速流場中可獲得較佳的減阻效率。在最佳穩健參數水準組合條件下,可獲得大約21.6%的減阻效果。
於電化學產氣裝置之減阻實驗中,先設計一簡易電化學產氣模組,用以瞭解各產氣參數對氣泡產氣率的影響,討論的參數包括電解質的種類、陰陽兩極的間距及鎂金屬片幾何形狀,並求得電流量與氣泡產氣率間的迴歸關係式。再將電化學反應產氣裝置安裝於水下潛體模型表面,利用水平式環流水槽進行微氣泡於均勻流場及艉跡流場兩種不同流況的減阻試驗。實驗結果顯示,在均勻流場的最佳減阻效果可達28.4%,而在艉跡流場更可高達46.9%。最後,將上述二種流場視為外在環境變異的干擾因子,利用田口式直交表法分析實驗數據,以獲得微氣泡減阻的最佳穩健參數設計,在此最佳穩健參數水準組合條件下,其減阻效果可達40.3%。
在空氣薄膜的減阻研究中,採用泛用型計算流體力學軟體來模擬具氣泡之渠道紊流場。空氣薄膜的減阻效率乃藉由計算渠道上壁面的局部剪應力估算,所討論的減阻參數包括空氣供應率、氣泡粒徑、供氣面積、流場速度及阻力量測位置。藉由變異數分析結果,顯示空氣供應率與流場速度兩參數對空氣薄膜的減阻效率影響最鉅。根據數值計算結果,平均可獲得83.4%的減阻效果;在最佳參數水準組合條件下,減阻效果可達88.5%。
The frictional resistance is the major drag force as a streamlined submerged vehicle moves under water. Hence, it might decrease the energy consumption and increase the speed for a submerged vehicle in case that the friction is reduced. The aim of this thesis is to acquire the robust parametric design associated with the bubble drag reduction. The drag reductions by microbubbles or an air film applying on a channel flow or a submerged vehicle in the outer flow were investigated by experiment and numerical simulation. The Taguchi orthogonal array method was adopted to assess the effects of the factors and their levels related to drag reduction. These studies of the drag reduction include three parts: the experiment of microbubble drag reduction in a turbulent channel flow, the experiment of microbubble drag reduction on a submerged body by electrochemistry, and the numerical simulation on drag reduction by an air film in a turbulent channel flow.
In the study of microbubble drag reduction in a turbulent channel flow, the microbubbles were generated by high-pressure air passing through a porous medium to reduce the frictional resistance on the upper wall of the channel. Considering the mean flow speed as an indicative factor, several control factors that influence the effect of microbubble drag reduction were investigated. These control factors were the rate of air injection, area of air injection and microbubble size. According to the analysis of variance, the rate of air injection is the most significant factor among the control factors. In addition, the flow speed also dominates the effect of drag reduction. For the configuration of optimum parametric levels, the effect of drag reduction could reach up to 21.6%.
For the experiment of drag reduction by electrochemistry, this work firstly investigated the influences of parameters related to the rate of gas generation by using a simply electrochemical module for generating gas bubble. These parameters studied in this work were the kind of electrolyte, the gap between anode and cathode poles, and shape of metal. The regression of the amperage and rate of gas bubble generation was found out. Then, applying with an electrochemical device on the surface of a submerged model, the experiments of the microbubble drag reduction in uniform and wake flows were carried out in a horizontal circulating water channel. Experimental results revealed that the best effect on the drag reduction was up to 28.4% in a uniform flow; in a wake flow drag reduction could be up to 46.9%. In addition, the conditions of uniform flow and wake flow were considered as the noise factors, and the Taguchi method was adopted to analyze the results of the experiment in order to get the optimum robust parametric levels for the microbubble drag reduction. About 40% drag reduction was got under the optimum robust condition.
In the study of the drag reduction by an air film, turbulent flows, with air bubbles injected into a channel, are simulated using commerical CFD software. The local shear stress on the upper wall is computed to evalute the efficiency of drag reduction. The factors investigated in this work are the rate of air injection, bubble size, area of air injection, flow speed and measured position of the shear stress. These factors have been investigated through the analysis of variance, which has revealed that the rate of air injection and water flow speed dominate the efficiency of drag reduction by a mixture film. According to the results, the drag can be reduced by an average of 83.4%; and when the configuration of the parametric levels is optimum the maximum drag reduction of 88.5% is achieved.
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
表目錄 xi
圖目錄 xiv
符號說明 xvii
1. 前言 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究方法與目的 12
1.4 本文架構 14
2. 穩健參數設計 16
2.1 田口法簡介 16
2.2 田口法與傳統實驗法的差別 16
2.3 田口法的使用步驟 19
2.4 品質特性的選定 21
2.5 直交表的使用 23
2.6 實驗數據的分析 28
2.6.1 因子水準反應表 29
2.6.2 變異數分析 30
2.7 確認實驗 33
3. 微氣泡於渠道內紊流場的減阻 34
3.1 實驗設備 34
3.1.1 垂直式循環水洞 34
3.1.2 阻力量測裝置 37
3.1.3 微氣泡產氣裝置 39
3.2 直交表的實驗規劃 41
3.2.1 品質特性 41
3.2.2 決定因子 41
3.2.3 控制因子間交互作用的檢驗 42
3.2.4 重新訂定水準數及直交表 49
3.3 實驗步驟 53
3.4 實驗誤差與不準確度估算 54
3.5 結果與討論 56
4. 電化學產氣方法應用於水下潛體的減阻實驗 66
4.1 實驗設備 66
4.1.2 水平式環流水槽 67
4.1.3 水下潛體模型 70
4.1.4 阻力量測裝置 72
4.1.5 艉跡流產生裝置 74
4.2 實驗規劃與量測方法 75
4.2.1 電化學產氣參數之探討 75
4.2.2 水下潛體減阻實驗的實驗規劃 76
4.2.3 水下潛體減阻穩健參數之實驗規劃 78
4.3 實驗誤差與不準確度估算 80
4.4 結果與討論 82
4.4.1 電化學產氣參數探討之結果 82
4.4.2 微氣泡於水下潛體之減阻實驗 88
4.4.3 水下潛體減阻實驗之穩健參數設計 91
5. 空氣薄膜於渠道紊流場的數值模擬 97
5.1 問題描述 97
5.2 數值模擬基本假設 98
5.3 統御方程式 99
5.4 紊流模式 99
5.4.1 紊流模式的分類 100
5.4.2 標準 模式 103
5.5 多相流模式 105
5.5.1 多相流模式的選擇 105
5.5.2 Mixture模式之數學模式 106
5.6 邊界條件 109
5.7 紊流場於鄰近壁面區域的處理 110
5.8 數值求解方法 111
5.9 實驗條件規劃 113
5.10 網格測試 114
5.11 結果與討論 120
5.11.1 數值結果與穩健參數 120
5.11.2 因子對反應值的貢獻率 124
5.11.3 預測值的檢驗 127
5.11.4 空氣薄膜之減阻特性 128
6. 結論 138
7. 未來展望與建議 140
參考文獻 141
附錄 146
自傳 149
[1]廖惠珠,“2007 年國際油價情勢回顧與展望”,石油市場雙週報專題分析報導,http://www.tri.org.tw/oil/file/article12-961226.pdf,2007年。
[2]吳聖儒、許政行、林聰得, “親水性與疏水性塗料對水下潛體減阻研究”, 中正嶺學報,第三十四卷,第一期,第215-226頁,2005。
[3]Wang, J.-J., Lan, S.-L. and Chen, G., “Experimental Study on the Turbulent Boundary Layer Flow over Riblets Surface,” Fluid Dynamics Research, Vol. 27, pp. 217-229, 2000.
[4]Hwang, D. P., “A Proof of Concept Experiment for Reducing Skin Friction by Using a Micro-Blowing Technique,” NASA Technical Memorandum 107315, AIAA-97-0546, http://gltrs.grc.nasa.gov/reports/1996/TM-107315.pdf, 1997.
[5]McCormick, M. E., and Bhattacharyya, R., “Drag Reduction of a Submersible Hull by Electrolysis,” Naval Engineers Journal, Vol. 85, pp. 11-16, 1973.
[6]徐世昌,“蓮花自潔功能與奈米科技的應用”,科學發展,354期,第 60-63頁,2002。
[7]林聰得,“水中載具減阻技術之實驗研究”,博士學位論文,中原大學機械工程學系,中壢,2006。
[8]Murai, Y., Fukuda, H., Oishi, Y., Kodama, Y. and Yamamoto, F., “Skin Friction Reduction by Large Air Bubbles in a Horizontal Channel Flow,” Int. Journal of Multiphase Flow, Vol. 33, pp. 147-163, 2007.
[9]Dubnishchev, Y. N., Evseev, A. R., Sobolev, V. S., and Utkin, E. N., “Study of Gas-Saturated Turbulent Streams Using a Doppler Velocimeter,” Journal of Applied Mechanical Technology Physics, Vol. 16, No. 1, pp. 114-119, 1975.
[10]Madavan, N. K., Deutsch, S., and Merkle, C. L., “Reduction of Turbulent Skin Friction by Microbubbles,” Physical of Fluids, Vol. 27(2), pp. 356-363, 1984.
[11]Merkle, C. L., and Deutsch, S., Drag reduction, In Frontiers in Experimental Fluid Mechanics, edited by M Gad-el-Hak, Lecture Notes in Engineering, Vol. 46, pp. 291-335, 1989.
[12]Wu, S. J., Hsu, C. H., and Lin, T. T., “Model Test of the Surface and Submerged Vehicles with the Micro-Bubble Drag Reduction,” Ocean Engineering, Vol. 34, No. 1, pp. 83-93, 2007.
[13]Tsai, J. F. and Chen, C. C., “Experimental Study on the Micro-Bubble Drag Reduction Effect in Water Tunnel and Towing Tank,” The 13th Asia-Pacific Workshop on Marine Hydrodynamics, Shanghai, China, 26-28, 2006.
[14]Takahashi, T., Kakugawa, A., Kawashima, H., and Kodama, Y., “Experimental Skin Friction Reduction by Microbubbles Using a Ship with a Flat Bottom,” 31th Symposium on Turbulence Flow, Tokoyo, http://www.nmri.go.jp/spd/drag /taka99/taka99e.htm , 1999.
[15]Takahashi, T., Kakugawa, A., Makino, M., Yanagihara, T., and Kodama, Y., “A Brief Report on Microbubble Experiments Using 50m-Long Flat Plate Ship,” Proceeding of 74th General Meeting of SRI, http://www.nmri.go.jp/spd/drag /taka00/Taka2000ps.htm, 2000. (In Japeness)
[16]Kawamura, T., Fujiwara, A., Takahashi, T., Kato, H., Matsumoto, Y. and Kodama, Y., “The Effects of the Bubble Size on the Bubble Dispersion and Skin Friction Reduction,” In: Proceedings of the 5th Symposium on Smart Control of Turbulence, Tokyo, http://www.nmri.go.jp/turbulence/PDF/ symposium/FY2003/Kawamura.pdf, 2004.
[17]Kato, H., Iwashina, T., Miyanaga, M. and Yamaguchi, H., “Effect of Microbubbles on the Structure of Turbulence in a Turbulent Boundary Layer,” Journal of Marine Science and Technology, Vol. 4, pp. 155-162, 1999.
[18]Kodama, Y., “Effect of Microbubbles Distribution on Skin Friction Reduction,” Proc. of the Int. Symposium on Seawater Drag Reduction, Newport, http://www.nmri.go.jp/spd/drag/seawater/seawater98.pdf, 1998.
[19]Lattorre, R., “Ship Hull Drag Reduction Using Bottom Air Injection,”. Ocean Engineering, Vol. 24, No. 2 pp. 161-175, 1997.
[20]Kato, H., and Kodama, Y., “Microbubbles As a Skin Friction Reduction Device- a Midterm Review of the Research,” Center for Smart Control of Turbulence, National Maritime Research Institute, 2001.
[21]Latorre, R., Miller, A., and Phillips, R., “Micro-Bubble Resistance Reduction on a Model SES Catamaran,” Ocean Engineering, Vol. 30, pp. 2297-2309, 2003.
[22]Wedin, R., Davoust, L., Cartellier, A., and Byrne, P., “Experiments and Modeling on Electrochemically Generated Bubbly Flows,” Experimental Thermal and Fluid Science, Vol. 27, pp. 685-696, 2003.
[23]Kawamura, T. and Kodama, Y., “Direction Numerical Simulation of Wall Turbulence with Bubbles,” Prod. of 2nd Symposium on Smart Control of Turbulence, pp. 135-143, 2001.
[24]Kawamura, T. and Kodama, Y., “Numerical Simulation Method to Resolve Interactions between Bubbles and Turbulence,” Int. J. Heat and Fluid Flow, Vol. 23, pp. 627-638, 2002.
[25]Sugiyama, K., Kawamura, T. Takagi, S. and Matsumoto, Y., “Numerical Simulation on Drag Reduction Mechanism by Microbubbles,” Prod. of 3rd Symposium on Smart Control of Turbulence, pp. 129-138, 2002.
[26]Patankar, N. A. and Joseph, D.D., “Modeling and Numerical Simulation of Particulate Flows by the Eulerian-Lagrangian Approach,” International Journal of Multiphase Flow, Vol. 27, pp. 1659-1684, 2001.
[27]Drew, D. A., “Mathematical Modeling of Two-Phase Flow,” Annual Review Fluid Mech., Vol. 15, pp. 261-291, 1983.
[28]Murai, Y. and Matsumoto, Y., “Numerical Simulation of Turbulent Bubbly Plumes Using Eulerinan-Lagrangian Bubbly Flow Modeling Equation,” Proc. of ASME FED, FED236, pp. 67-74, 1996.
[29]Legner, H. H., “A Simple Model for Gas Bubble Drag Reduction,” Phys. of Fluids, Vol. 27, pp. 2788-2790, 1984.
[30]Madavan, N. K., Merkle, C. L., and Deutsch, S., “Numerical Investigations into the Mechanisms of Microbubble Drag Reduction,” Journal of Fluids Engineering, Vol. 107, pp. 370-377, 1985.
[31]Marie, J. L., “A Simple Analytical Formulation for Microbubble Drag Reduction,” Physical Chemical Hydrodynamics, Vol. 8, pp. 213-220, 1986.
[32]嚴祖煦,“微氣泡技術在減阻上之研究”, 碩士學位論文,國防大學中正理工學院造船工程研究所,桃園,2000。
[33]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司出版,台南,第44-271頁,2000。
[34]Kim, K. D., Choi, D.W., Choa Y. H., Kim, H. T., “Optimization of Parameters for the Synthesis of Zinc Oxide Nanoparticles by Taguchi Robust Design Method,” Colloids and Surface A: Physicochemical Engineering, No. 331, pp. 170-173, 2007.
[35]Nikbakht, R., Sadrzadeh, M., Mohammadi, T., “Effect of Operating Parameters on Concentration of Citric Acid using Electrodialysis,” Journal of Food Engineering, No. 83, pp. 596-604, 2007.
[36]黃得誌,“結合灰關聯分析法與田口法於多目標數控車削參數最佳化研究”,碩士學位論文,大同大學機械工程研究所,台北,2007。
[37]林江龍、周旻德、張育銘,“模糊決策分析應用於製程參數之最佳化”,計量管理期刊,Vol. 1, No. 1, pp. 59-73,2004。
[38]陳耀茂,實驗計劃與解析法,高立圖書有限公司出版,台北,2001。
[39]White, F. M., Fluids Mechanics, Fourth Edition, McGraw-Hill, 1999.
[40]White, F. M., Viscous Fluid Flow, Second Edition, McGraw-Hill, 1991.
[41]Holman, J. P., Experimental Methods for Engineers, 7th Edition, McGraw-Hill Book Company, New York, 2001.
[42]吳聖儒、歐陽寬、夏曉文,電化學產氣裝置應用於水下潛體之微氣泡減阻實驗,中正嶺學報,第36卷,第2期,pp. 1-14,2008。
[43]Tennekes, H. and Lumley, J. L., A First Course in Turbulence, The MIT Press, London, 1980.
[44]張兆順,湍流,國防工業出版社,北京,2002。
[45]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics; The Finite Volume Method, Longman, 1995.
[46]Fluent Inc., Fluent 6.2 User’s Guide, Lebanon, 2006.
[47]黃信皇,“微氣泡對渠道內液體紊流場減阻參數之實驗設計”,碩士學位論文,國防大學理工學院造船工程研究所,桃園,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top