跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾俊傑
研究生(外文):Chun-Chieh Tseng
論文名稱:奈米貴金屬觸媒墨水製備與應用於噴墨列印金屬化製程之研究
論文名稱(外文):Studies on the preparation of noble metal catalyst ink and its applications on inkjet printing metallization process
指導教授:張章平葛明德葛明德引用關係歐進祿
指導教授(外文):Chang-Pin ChangMing-Der GerJinn-Luh Ou
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:142
中文關鍵詞:奈米粒子噴墨列印無電電鍍
外文關鍵詞:NanoparticlesInk-jet printingElectroless plating
相關次數:
  • 被引用被引用:8
  • 點閱點閱:608
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為一新方法製備親水性與疏水性貴金屬奈米粒子,利用以苯乙烯寡分子為主含硫酸根基團之寡分子,在不添加還原劑的情況下可還原貴金屬奈米粒子,並可在未添加分散劑的情況下,使奈米粒子穩定分散於有機溶液或水溶液中,其反應的機制可能為:在加熱寡分子與貴金屬離子時,於苯乙烯寡分子鏈端的硫酸根基團,首先熱裂為亞硫酸基團(SO32-)與醇基(Alcohol),而Alcohol氧化做為還原核點的角色,SO32-用來成長奈米粒子,此外利用Gaussian 98分子模擬軟體來印証苯乙烯寡分子有一步驟還原奈米粒子的能力。 以苯乙烯寡分子所還原之鈀奈米粒子(St/Pd)可做為無電鍍所使用之活化液,其沉積速率較傳統錫鈀(Sn/Pd)膠體來的好,此St/Pd膠體之墨水成功的利用噴墨列印的方式噴印至可繞曲基材上,而金屬鈀所形成之圖案可催化無電鍍反應於低溫下製備金屬導線。
另外為了解決鈀活化液在無電電鍍銅時於基材上的附著力與製備非有機性之鈀活化液,因此使用了具備pH敏感性的甲殼素Chitosan(CS)-co-醋酸乙烯酯poly(Vinyl Acetate) (PVAc)的高分子,來增加鈀粒子在基材上的附著力。在酸性溶液中時Chitosan所含的氨基NH2會產生質子化反應(Protonation)得到質子轉變為NH3+,而NH3+可藉由靜電排斥力使奈米粒子於溶液中穩定分散,而當進入鹼性之銅鍍液裡後,NH3+官能基行去質子化作用(Deprotonation)轉換為NH2官能基,而利用NH2官能基來增加鈀活化液對基材的附著力,從研究結果發現,所還原出來的鈀奈米粒子的粒徑隨PVAc的比例增加而增加,而表面電位結果證實,當溶液從酸性轉換到鹼性時,Chitosan鏈上的NH3+官能基去質子化形成NH2官能基,因此表面電位從正轉變為中性,而穩定鈀奈米粒子靜電斥力也隨著質
子化反應消失,使得粒子吸附於基材上,藉由此反應機制來增加增加墨水與基材之間的附著力。
A novel method for the preparation of hydrophilic or hydrophobic noble metal nanoparticles was developed in this study. The styrene-based oligomers with sulfate end groups, which can be applied for the reduction and stabilization of noble metal nanoparticles, show well dispersion in aqueous or organic solvent without addition of surfactant and reducing agent in the mixture. Based on this study, a possible mechanism is proposed: by heating the aqueous solution in the presence of metal ions and styrene oligomers, the sulfate group which is on the chain end of styrene oligomers decomposes to sulfite (SO32-) firstly and alcohol is synchronously produced. The reduction of metal nuclei could thus take place by means of oxidization of alcohol and the growth of metal nuclei would be succeeded because of the presence of SO32-. The simulated results of Gaussian 98 program were in good agreement with the capabilities of styrene oligomers applied for one-step reduction of nanoparticles. These Pd nanoparticles reduced by styrene (St) can be used as activator for electroless metal deposition. The deposition rate of St/Pd nanoparticles system was higher than that of conventional Sn/Pd colloids. The ink based on St/Pd colloids was successfully ink-jet printed onto a flexible substrate. The formed metallic palladium patterns were subjected to electroless nickel plating, yielding well-defined nickel lines at low temperature.
A pH-sensitive chitosan (CS)-graft- poly(vinyl acetate) (PVAc) copolymer was also utilized to self-reduce Pd nanoparticles. The pH-sensitive chitosan chains not only function as stabilizing agent for noble metal nanoparticles in ink solution but also enhance the adhesion between Pd nanoparticles(PdNPs) and the substrate during the electroless deposition of Cu film. It is interesting to note that the diameter of PdNPs increases with increasing of PVAc contents. By heating the aqueous solution in the presence of metal ions and chitosan-g-PVAc, the metal nuclei reduced within the core. The core diameter increases with increasing PVAc percentages, resulting in formation of bigger Pd nanoparticles. The zeta potential of these copolymer stabilized PdNPs decreases with increasing pH value. Since the amino group in chitosan has a pKa value of ~6.5, thus, chitosan is positively charged (NH3+) in acidic or neutral solution, whereas it turns to neutral in an alkaline solution. The CS-g-0.5PVAc/PdNPs used as the catalyst was ink-jet printed onto flexible FR-4 substrate first, followed by electroless Cu deposition. This process is clean, easy and low-cost for formation of a high resolution patterning.
誌 謝 ii
摘 要 iii
ABSTRACT v
目錄 vii
表目錄 ix
圖目錄 x
1. 緒論 1
1.1 研究背景 1
1.2 研究動機 4
2. 文獻回顧 5
2.1 分子自身還原貴金屬奈米粒子 5
2.2 自由基聚合聚苯乙烯寡分子與聚苯乙烯磺化反應 8
2.3 共聚合反應聚苯乙烯與聚甲基丙烯酸甲酯共聚物 14
2.4 以噴墨列印在可繞性基材上製作金屬導線之研究 18
2.5 電化學沉積金屬技術 24
3. 實驗步驟 33
3.1 實驗藥品 33
3.2 實驗設備 34
3.3 檢測方式 35
3.4 聚苯乙烯寡分子合成與磺酸化反應還原貴金屬奈米粒子 41
3.5 聚苯乙烯與聚甲基丙烯酸甲酯共聚合反應還原貴金屬奈米粒子 42
3.6 噴墨列印與無電鍍製程製作金屬導線之研究 44
3.7 甲殼素共聚聚醋酸乙烯酯反應 46
4. 結果與討論 47
4.1 苯乙烯寡分子與磺酸化苯乙烯寡分子合成與自身還原貴金屬奈米粒子 47
4.1.1 苯乙烯寡分子與磺酸化苯乙烯寡分子之製備與反應機制探討 47
4.1.2 苯乙烯寡分子與磺酸化苯乙烯寡分子自身還原貴金屬奈米粒子之探討 54
4.2 苯乙烯-甲基丙烯酸甲酯共聚物與自身還原貴金屬奈米複合粒子 68
4.2.1 苯乙烯-甲基丙烯酸甲酯共聚物之製備與反應機制探討 68
4.2.2 苯乙烯-甲基丙烯酸甲酯共聚物自身還原貴金屬奈米粒子之探討 72
4.3 苯乙烯-甲基丙烯酸甲酯共聚物製備鈀奈米觸媒墨水應用於噴墨列印金屬化製程 85
4.4 甲殼素接枝聚醋酸乙烯酯聚合物與自身還原鈀奈米粒子 105
5. 結 論 117
未來規劃 118
參考文獻 119
論文發表 136
自傳 142
[1] Feynman, R., “There's Plenty of Room at the Bottom,” Science, Vol. 254, pp. 1300, 1991.
[2] Kruis, F. E., Fissan, H., Peled, A., “Synthesis of Nanoparticles in the Gas Phase for Electronic, Optical and Magnetic Applications-A Review,” J. Aerosol Sci., Vol. 29, pp.511-535, 1998.
[3] Godovsky, D. Y., “Device Application of Polymer-Nanocomposites,”Advances Polymer Science, Vol. 119, pp. 163-205, 1995.
[4] Hua, S. H., Chou, C. W., “Enhanced Biostability of Polyurethane Containing Gold Nanoparticles,” Polymer Degradation and Stability, Vol. 85, pp. 675-680, 2004.
[5] Ng, W. K., Wu, L., Moran, P. M., “Microcontact Printing of Catalytic Nanoparticles for Selective Electroless Deposition of Metals on Nonplanar Polymeric Substrates,” Applied Physics Letters, Vol. 81, pp. 16-18, 2002.
[6] Nakao, Y., “Noble Metal Solid Sols in Poly(Methyl Methacrylate),”Journal of Colloid and Interface Science, Vol. 171, pp. 386-391, 1995.
[7] Nair, P. S., Radhakrishnan, T., Revaprasadu, N., Kolawole, G. A., Brien, P. O.,“The Synthesis of HgS Nanoparticles in Polystyrene Matrix,”J. Mater. Chem., Vol. 14, pp. 581-584, 2004.
[8] Liu, F. K., Hsieh, S. Y., Ko, F. H., Chu, T. C., Dai, B. T., “Synthesis of Nanometer-Sized Poly (Methyl Methacrylate) Polymer Network by Gold Nanoparticle Template,” Jpn. J. Appl. Phy., Vol.42, pp.4147-4151, 2003
[9] Hahakura, S., Isoda, S., Ogawa, T., Moriguchi, S., Kobayashi, T., “Formation of Ultrafine Platinum Particles in an Aqueous Solution with a Surfactant,” Journal of Crystal Growth, Vol. 237, pp. 1942-1945, 2002.
[10] Hyning, D. L. V., Zukoski, C. F., “Formation Mechanisms and Aggregation Behavior of Borohydride Reduced Silver Particles,” Langmuir, Vol. 14, pp.
7034-7046, August, 1998.
[11] Yu, Y. Y., Chang, S. S., Lee, C. L., Wang, C. R., “Gold Nanorods: Electrochemical Synthesis and Optical Properties,” J. Phys. Chem. B, Vol. 101, No.34, pp. 6661-6664, 1997.
[12]Maitra, A., “Determination of Size Parameters of Water-Aerosol OT-Oil Reverse Micelles from Their Nuclear Magnetic Resonance Data,” J. Phys. Chem., Vol. 88, pp. 5122-5125, April, 1984.
[13] Ito, S., Yoshihikawa, H., Masuhara, H., “Laser Manipulation and Fixation of Single Gold Nanoparticles in Solution at Room Temperature,” Appl. Phys. Lett., Vol. 80, No. 3, pp. 482-484, 2002.
[14] Hu, C. W., Kasuya, A., Wawro, A., Horiguchi, N., Czajka, R., Nishina, Y., Saito, Y., Fujita, H.,“Gold Clusters Deposited on Highy Oriented Pyrolytic Graphite by Pulse Laser Ablation and Liquid Metal Ion Source,” Materials Science and Engineering A, Vol. 217, pp. 103-107, 1996.
[15] Illy, C. S., Tillement, O., Dubois, J. M., Massicot, F., Fort, Y., Ghanbaja, J., Bégin, C. S., “Synthesis and Characterization of Nano-Sized Nickel(II), Copper(I) and Zinc(II) Oxide Nanoparticles,” Materials Science and Engineering A, Vol. 338, pp. 70-75, 2002.
[16] Deki, S., Ko, H. Y., Fujita, T., Akamatsu, K., Mizuhata, M., Kajinami, A., “Synthesis and Microstructure of Metal Oxide Thin Films Containing Metal Nanoparticles by Liquid Phase Deposition (LPD) Method,” Eur. Phys. J. D, Vol. 16, pp. 325-328, 2001.
[17] Dolgaev, S. I., Simakin, A. V., Voronov, V. V., Shafeev, G. A., Bozon, V. F., “Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment,”Applied Surface Science, Vol. 186, pp. 546-551, 2002.
[18] Brust, M., Kiely, C. J., “Some Recent Advances in Nanostructure Preparation from Gold and Silver Particles: a Short Topical Review,” Colloids and Surfaces A, Vol. 202, pp. 175-186, 2002.
[19] Chen, Y. H., Yeh, C. S., “Laser Ablation Method: Use of Surfactants to form the Dispersed Ag Nanoparticles,” Colloids and Surfaces A, Vol. 197, pp. 133-139, 2002.
[20] Kher, S. S., Wells, R. L.,“Synthesis and Characterization of Colloidal Nanocrystals OF Capped Gallium Arsenide,” Nanostructure Materials, Vol. 7, No. 6, pp. 591-603, 1996.
[21] Pradhan, N., Pal, A., Pal, T.,“Silver Nanoparticle Catalyzed Reduction of Aromatic Nitro Compounds,” Colloids and Surfaces A, Vol. 196, pp. 247-257, 2002.
[22] Mei, Y., Lu, Y., Polzer, F., Ballauff, M.,“Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels,”, Chem. Mater., Vol. 19, pp. 1062-1069, 2007.
[23] Zhang, Z. Q., Patel, R. C., Kothari, R., Johnson, C. P., Friberg, S. E., Aikens, P. A.,“Stable Silver Clusters and Nanoparticles Prepared in Polyacrylate and Inverse Micellar Solutions,”J. Phys. Chem. B, Vol. 104(6), pp. 1176-1182, 2000.
[24] Raveendran, P., Goyal, A., Blatchford, M. A., Wallen, S. L.,“Stabilization and Growth of Silver Nanocrystals in Dendritic Polyol Dispersions,”Mater. Lett., Vol. 60(7), pp. 897-900, 2006.
[25] Dokoutchaev, A., James, J. T., Koene, S. C., Pathak, S., Prakash, G. K. S., Thompson, M. E.,“Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres,” Chem. Mater., Vol.11(9), pp. 2389-2399, 1999.
[26] Mayer, A. B. R.,“Formation of Noble Metal Nanoparticles within a Polymeric Matrix: Nanoparticle Feature and Overall Morphologies,” Mater. Scien. and Eng. C, Vol. 6(2-3), pp. 155-166, 1998.
[27] Kumar, C. S. S. R., Aghasyan, M., Modrow, H., Doomes, E., Henk, C., Hormes, J.,“Synthesis and Characterization of S-Au Interaction in Gold Nanoparticles Bound Polymeric Beads,” J. Nanopart. Res., Vol. 6, pp. 369-376, 2004.
[28] Huang, C. J., Wang, Y. H., Chiu, P. H., Shih, M. C. Meen, T. H., “Electrochemical Synthesis of Gold Nanocubes,”Mater. Lett., Vol. 60(15) pp. 1896-1900, 2006.
[29] Jana, N. R., Gearheart, L., Murphy, C. J.,“Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles,” Chem. Mater., Vol. 13(7), pp. 2313-2322, 2001.
[30] Isable, P. S., Luis, M. L. M.,“Formation of PVP-Protected Metal Nanoparticles in DMF,”Langmuir, Vol. 18(7), pp. 2888-2894, 2002.
[31] Evgenii, B. B., Dmitry, A. P., Marina, V. B.,“Influence of Silver Nanoparticles on the Phase Behavior of Side-Chain Liquid Crystalline Polymers,”Langmuir, Vol. 20(25), pp. 10868-10871, 2004.
[32] Toshio, S., Paschalis, A.,“Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous Amphiphilic Block Copolymer Solutions at Ambient Conditions,” J. Phys. Chem. B, Vol. 109(16), pp. 7766-7777, 2005.
[33] Hebner, T. R., Wn, C.C., Marcy, D., Lu, M. H., Sturm, J. C.,“Ink-jet Printing of Doped Polymers for Organic Light Emitting Devices,” Appl. Phys. Lett., Vol. 72, pp. 519, 1998.
[34] Paul, K. E., Wong, W. S., Ready, S. E., Street, R. A.,“Additive Jet Printing of Polymer Thin-Film Transistors,” Appl. Phys. Lett., Vol. 83, pp. 2070, 2003.
[35] Cheng, K., Yang, M. H., Chiu, W. W. W., Huang, C. Y., Chang, J., Ying, T. F., Yang, Y.,“Ink-Jet Printing, Self-Assembled Polyelectrolytes, and Electroless Plating: Low Cost Fabrication of Circuits on a Flexible Substrate at Room Temperature,” Macromol. Rapid Commun., Vol. 26, pp. 247-264, 2005.
[36] Loffredo, F., Burrasca, G., Quercia, L., Sala, D. D.,“Gas Sensor Devices Obtained by lnk-jet Printing of Polyaniline Suspension,”Macromol. Symp., Vol. 247, pp. 357-363, 2007.
[37] Lee, C. L., Wan, C. C., Wang, Y. Y., “Synthesis of Metal Nanoparticles via Self-Regulated Reduction by an Alcohol Surfactant,” Adv. Funct. Mater., Vol. 11(5), pp. 344-347, 2001.
[38] Sun, X., Dong, S., Wang, E., “One-Step Synthesis and Characterization of Polyelectrolyte-Protected Gold Nanoparticles Through a Thermal Process,” Polymer, Vol. 45, pp. 2181-2184, 2004.
[39] Sun, X., Dong, S., Wang, E.,“One-Step Polyelectrolyte-Based Route to Well-Dispersed Gold Nanoparticles: Synthesis and Insight,” Mater. Chem. Phys., Vol. 96, pp. 29-33, 2006.
[40] Sun, X., Jiang, X., Dong, S., Wang, E.,“One-Step Synthesis and Size Control of Dendrimer-Protected Gold Nanoparticles: A Heat-Treatment-Baesd Strategy,” Macromol. Rapid Commun., Vol. 24(17), pp. 1024-1028, 2003.
[41] Luo, Y.,“One-Step Preparation of Gold Nanoparticles with Different Size Distribution,” Mater. Lett., Vol. 61, pp. 1039-1041, 2007.
[42] Luo, Y., Sun, X., “One-Step Preparation of Poly(Vinyl Alcohol)-Protected Pt Nanoparticles Through a Heat-Treatment Method,” Materials Letters, Vol. 61, pp. 2015-2017, 2007.
[43] Luo, Y., “Large-Scale Preparation of Single-Crystalline Gold Nanoplates,” Materials Letters, Vol. 61, pp. 1346-1349, 2007.
[44] Luo, Y., “Size-Controlled Preparation of Polyelectrolyte-Protected Gold Nanoparticles by Natural Sunlight Radiation,” Materials Letters, Vol. 61, pp. 2164-2166, 2007.
[45] Sun, X., Luo, Y., “Preparation and Size Control of Silver Nanoparticles by a Thermal Method,” Materials Letters, Vol. 59, pp. 3847-3850, 2005.
[46] Chen, M., Wang, L. Y., Han, J. T., Zhang, J. Y., Li, Z. Y., Qian, D. J.,“Preparation and Study of Polyacryamide-Stabilized Silver Nanoparticles through a One-Pot Process,” J. Phys. Chem. B, Vol. 110(23), pp. 11224-11231, 2006.
[47] Aslam, M., Fu, L., Su, M., Vijayamohanan, K., Dravid, V. P.,“Novel One-Step Synthesis of Amine-Stabilized Aqueous Colloidal Gold Nanoparticles,” J. Mater. Chem., Vol. 14, pp. 1795-1797, 2004.
[48] Chen, H., Wang, Y., Wang, Y., Dong, S., Wang, E.,“One-Step Preparation and Characterization of PDDA-Protected Gold Nanoparticles,”Polymer, Vol. 47 pp. 763-766, 2006.
[49] Zhou, M., Chen, S., Zhao, S., “Synthesis of Icosahedral Gold Nanocrystals: A Thermal Process Strategy,” J. Phys. Chem. B, Vol. 110, pp. 4510-4513, 2006.
[50] Umar, A. A., Oyama, M., “Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(Vinylpyrrolidone),” CRYSTAL GROWTH & DESIGN, Vol.6, pp. 818-821, 2006.
[51] Hoppe, C. E., Lazzari, M., Ivàn P. B, Arturo, M. L. Q., “One-Step Synthesis of Gold and Silver Hydrosols Using Poly(N-Vinyl-2-Pyrrolidone) as a Reducing Agent,” Langmuir, Vol. 22, pp. 7027-7034, 2006.
[52] Note, C., Koetz, J., Kosmella, S., Tiersch, B., “Hydrophobically Modified Polyelectrolytes Used as Reducing and Stabilizing Agent for the Formation of Gold Nanoparticles,” Colloid Polym. Sci., Vol. 283, pp. 1334-1342, 2005.
[53] Grace, A., Nirmala, P., K., “Organically Dispersible Gold and Platinum Nanoparticles Using Aromatic Amines as Phase Transfer and Reducing Agent and Their Applications in Electro-Oxidation of Glucose,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 302, pp. 113-120, 2007.
[54] Henry, S., Makowski, R. D., Lunderg, G. H., S., “Flexible Polymeric Compositions Comprising a Normally Plastic Polymer Sulfonated to about 0.2 to about 10 mole% Sulfonate,” U.S. Patent, 3,870,841.
[55] Kucera, F., Jancar, J., “Homogeneous and Heterogeneous Sulfonation of Polymers: A Review,” Polymer Engineering and Science, Vol. 38, 5, pp. 783 1998.
[56] Breuers, W., Mark, H., Konrad, E., “Impregnation of Materials,” U.S. Patent, 2,031,929 1936.
[57] Huang, R. Y. M. and Kim, J. J., “Synthesis and Transport Properties of Thin Film Composite Membranes. I. Synthesis of Poly(Phenylene Oxide) Polymer and its Sulfonation,” J. AppL. Polym. Sci., Vol. 29, pp. 4017, 1984.
[58] Vink, H.,“A New Convenient Method for the Synthesis of Poly(Styrenesulfonic Acid),” Makromol. Chem., Vol. 182, pp. 279, 1981.
[59] Kim, G. Y., Salovey, R., Aklonis, J. J.,“Model Filled Polymers,” Polym. Bulletin, Vol. 23, pp. 543, 1990.
[60] Regas, F. P.,“Physical Characterization of Suspension-Crosslinked Polystyrene Particles and Their Sulphonated Products. II: Ionic Networks,” Polymer, Vol. 25, pp. 249-253, 1984.
[61] Carrol, W. R., Eisenberg, H., “Narrow Molecular Weight Distribution Poly(Styrenesulfonic Acid). Part I. Preparation, Solution Properties, and Phase Separation,” J. Polym Sci., Part A-2, Vol. 4, pp.599, 1966.
[62] Oh, J. T., Kim, J. H., “Preparation and Properties of Immobilized Amyloglucosidase on Nonporous PS/PNaSS Microspheres,” Enzyme and Microbial Technology, Vol.27, pp356-361, 2000.
[63] Klitzing, R.V., Espert, A., Asnacios, A., Hellweg, T., Colin, A., Langevin, D. “Forces in Foam Containing Polyelectrolyte and Surfactant,” Colloid and surfaces A:Physicochemical and Engineering Aspects, Vol.149, pp131-140, 1999.
[64] Chen, W. J., Martin, C. R., “Pervaporation Separation of Ethanol/Water Mixtures by Polystyrenesulfonate/Alumina Composite Membranes,” Journal of Membrane Science, Vol.107, pp.199-207, 1995.
[65] Orler, E. B., Yontz, D. J., Moore, R. B., “Sulfonation of Syndiotactic Polystyrene for Model Semicrystalline Ionomer Investigations,” Macromolecules, Vol. 26, pp. 5157-5160, 1993.
[66] Yang, J. C., Jablonsky, M. J., Mays, J. W., “NMR and FT-IR Studies of Sulfonated Styrene-Based Homopolymers and Copolymers,” Polymer, Vol. 43, pp. 5125-5132, 2002.
[67] Madruga, L. E., “From Classical to Living/Controlled Statistical Free-Radical Copolymerization,” Progress in Polymer Sciene, Vol. 27, pp. 1879-1924, 2002.
[68] Goldwasser, J. M., Rudin, A., “Emulsion Copolymerization of Styrene and Methl Methacrylate,” Journal of Polymer Science: Polymer Chemistry Edition, Vol.20, pp.1993-2006, 1982.
[69] Teodorescu, M., Dimonie, M., Cerchez, I., “Free-Radical Copolymerization of Methyl Methacrylate with Styrene in the Presence of 2-Mercaptoethanol,” European Polymer Journal, Vol. 35, pp. 247-252, 1999.
[70] Mircea, T., “Free-Radical Copolymerization of Methyl Methacrylate with Styrene in the Presence of 2-Mercaptoethanol ІІ. Influence of Methyl Methacrylate/Styrene Ratio,” European Polymer Journal, Vol. 38, pp.841-846, 2002.
[71] Mircea, T.,“Synthesis of (Vinyl Acetate)-Terminated Polystyrene Macromonomers by Free-Radical Polymerization in the Presence of Vinyl Iodoacetate,” European Polymer Journal, Vol. 37, pp. 1417-1422, 2001.
[72] Mircea, T., Mihai D., Constantin D., Sever, S., Gabriel V., Mirela C., “Grafting Styrene onto Poly(Vinyl Acetate) by Free Radical Chain Transfer Reactions,” Reactive & Functional Polymer, Vol. 61, pp. 387-395, 2004.
[73] Clay, R. T., Cohen, R. E.,“Synthesis of Metal Nanoclusters Within Microphase-Separated Diblock Copolymers: a Universal Approach,” Supramolecular Science, Vol. 2, pp. 183-191, 1995.
[74] Cohen, R. E., “Block Copolymers as Templates for Functional Materials,” Current Opinion in Solid State and Materials Science, Vol. 4, pp. 587-590, 1999.
[75] Mayer, A. B. R., Antonietti M., “Investigation of Polymer-Protected Noble Metal Nanoparticles by Transmission Electron Microscopy: Control of Particle Morphology and Shape,” Colloid Polym. Sci., Vol. 276, pp. 769-779, 1998.
[76] Mayer, A. B. R., Mark, J. E., “Transition Metal Nanoparticles Protected by Amphiphilic Block Copolymers as Tailored Catalyst Systems,” Colloid Polym. Sci., Vol. 275, pp. 333-340, 1997.
[77] Elmqvist, R., “Measuring Instrument of the Recording Type,” U. S. Patent, 2566443, 1951.
[78] Sweet, R. G., “High Frequency Recording with Electrostatically Deflected Ink-Jets,” Rev. Sci. Instrum., Vol. 36, pp.131-136, 1965.
[79] Buehner, W. L., Hill, J. D., “Multiple Speed Ink Jet Printer,” U. S. Patent, 4216480, 1980.
[80] Zoltan, S. L., “Pulse Droplet Ejection System,” U. S. Patent, 3683212, 1974.
[81] Kyser, E. L., Sears, S. B., “Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore,” U. S. Patent, 3946398, 1976.
[82] Vaught, J. L., Cloutier, F. L., Donald D. K., Meyer J. D., Tacklind C. A., Taub H. H., (Hewlett-Packard), “Thermal Ink-Jet Printer,”, U. S. Patent, 4490728, 1979
[83] Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H., Friend, R. H., “Inkjet Printing of Polymer Thin Film Transistors,” Thin Solid Film, Vol. 438-439, pp. 279-287, 2003.
[84] Bharathan, J., Yang, Y., “Polymer Electroluminescent Devices Processed by Inkjet Printing: I. Polymer Light-Emitting Logo,” Applied Physics Letter, Vol. 72, pp. 2660-2662, 1998.
[85] Chang, S. C., Bharathan, J., Yang, Y., “Dual-Color Polymer Light-Emitting Pixels Processed by Hybrid Inkjet Printing,” Applied Physics Letter, Vol. 73, pp. 2561-2563, 1998.
[86] Liu, Y., Cui. T. h., Varahramyan, K., “All-Polymer Capacitor Fabricated with Inkjet Printing Technique,” Solid-State Electronics, Vol. 47 pp. 1543-1548, 2003.
[87] Liu, Z. C., Su, Y., Varahramyan, K., “Inkjet-Printed Silver Conductors Using Silver Nitrate Ink and Their Electrical Contacts with Conducting Polymers,” Thin Solid Films, Vol. 478, pp. 275-279, 2005.
[88] Teng, K. F., Vest, R. W., “Metallization of Solar Cells with Ink Jet Printing and Silvermetallo-Organic Inks,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 11 pp. 291-297, 1988.
[89] Guo, T. F., Chang, S. C., Seungmoon, P., Yang, Y., “Vertically Integrated Electronic Circuits via a Combination of Self-Assembled Polyelectrolytes, Ink-Jet Printing, and Electroless Metal Plating Processes,” Langmuir, Vol. 18, pp. 8142-8147, 2002.
[90] Daniel, H., Frank, L., Steven, M., David, R., Vivek, S., “Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics,” Journal of the Electrochemical Society, Vol. 150(7), pp. G412-G417, 2003.
[91] Hiroki, A., Kazuhiro, M., Motoo, Y., Junko, Y., Sashiro, U., “Ink-jet Printing of Nanoparticle Catalyst for Site-Selective Carbon Nanotube Growth,” Applied Physics Letters, Vol. 82, pp. 811-813, 2003.
[92] Alexander, K., Matti, B. M., Shai, A., Shlomo, M., “Ink-Jet Printing of Metallic Nanoparticles and Microemulsions,” Macromolecular Rapid Communications, Vol. 26, pp. 281-288, 2005.
[93] Shah, P., Kevrekidis, Y., Benziger, J., “Ink-Jet Printing of Catalyst Patterns for Electroless Metal Deposition,” Langmuir, Vol. 15, pp. 1584-1587 1999.
[94] Ou, J. L., Chang, C. P., Sung, Y., Ou, K. L., Tseng, C. C., Ling, H. W., Ger, M. D., “Uniform Polystyrene Microspheres Decorated with Noble Metal Nanoparticles Formed Without Using Extra Reducing Agent,” Colloids Surf. A: Physcicochem. Eng. Aspects, Vol. 305, pp. 36-41, 2007.
[95] Tsunoyama, H., Sakurai, H., Tsukuda, T., “Size Effect on the Catalysis of Gold Clusters Dispersed in Water for Aerobic Oxidation of Alcohol,” Chem. Phys. Lett., Vol. 429 pp. 528-532, 2006.
[96] Liu, M. H., Chen, C., Hong, Y. S., “Improved Modification for the Density-Functional Theory Calculation of Thermodynamic Properties for C–H–O Composite Compounds,” J. Chem. Phys., Vol. 122, pp. 064312, 2005.
[97] Deivaraj, T. C., Lala, L. N., Lee, J. Y., “Solvent-Induced Shape Evolution of PVP Protected Spherical Silver Nanoparticles into Triangular Nanoplates and Nanorods,” J. Colloid. Interface Sci., Vol. 289, pp. 402, 2005.
[98] Kunz, M. S., Shull, K. R., Kellock, A., “Colloidal Gold Dispersion in Polymeric Matrices,” J. Colloid. Interface Sci., Vol. 156, pp. 240, 1993.
[99] Chen, C.W., Serizawa, T., Akashi, M., “Preparation of Platinum Colloids on Polystyrene Nanospheres and Their Catalytic Properties in Hydrogenation,” Chem. Mater., Vol. 11, pp. 1381, 1999.
[100] Kim, D. H., Jo, W. H., “Studies on Polymer-Metal Interfaces, 4. Effect of Substituent of Polymethacrylate on the Interfacial Characteristics between Polymethacrylates and Copper,” Macromol. Chem. Phys., Vol. 202, pp. 3065, 2001.
[101] Sun, Y., Xia, Y., “Shape-Controlled Synthesis of Gold and Silver Nanoparticles” Science, Vol. 298, pp. 2176, 2002.
[102] Lee, C. L., Huang, Y. C., Kuo, L. C., “Catalytic Effect of Pd Nanoparticles on Electroless Copper Deposition,” J. Solid State Electrochem., Vol. 11, pp. 1313-1317, 2007.
[103] Lee, C. L., Wan, C. C., Wang, Y. Y., “Pd Nanoparticles as a New Activator for Electroless Copper Deposition,” Journal of the Electrochemical Society, Vol. 150, pp. C125-C130, 2003.
[104] Lin, P., Ting, C. H., “Selective Electroless Copper for VLSI Interconnection,” Electron Device Letters, Vol. 9, pp. 423-425, 1989.
[105] Brenner, A., “Nickel Plating by Chemical Reductiob ,” U.S. Patent, 2,532,283, 1950.
[106] Narcus, H., “Method for Metalizajion on,” U.S. Patent, 2,454,610, 1948.
[107] Cahill, A. E., Taube, H., “One-Electron Oxidation of Copper Phthalocyanine,” J. Am. Chem. Soc., Vol. 73 (6), pp. 2847-2851, 1951.
[108] Yosi, S. D., Valery, D., Angyal, M., “Electroless Copper Deposition for ULSI,” Thin Solid Film, Vol. 262, pp. 93-103, 1995.
[109] Horkans, J., Kim, J., McGrath, C. and Romankiw, L. T., “A TEM Study of the Effect of Accelerators on Pd-Sn Colloidal Catalysts and on the Initiation of Electroless Cu Deposition on Epoxy,” J. Electrochem. Soc., Vol. 134(2), pp. 300-304, 1987.
[110] Ger, M. D., Sung, Y., Ou, J. L., “A Novel Process of Electroless Ni-P plating by Nonisothermal Method,” Materials Chemistry and Physics, Vol. 89, pp. 383–389, 2005.
[111] Hara, T., Kamijima, S., Shimura, Y., “Electroplating of Copper Conductive Layer on the Electroless-Plating Copper Seed Layer,” Electrochemical and Solid state Letter, Vol. 6, No. 1, pp. C8-C11, 2003.
[112] Oita, M., Matsuoka, M. and Iwakura, C., “Deposition Rate and Morphology of Electroless Copper Film from Solutions Containing 2,2’-Dipyridyl,” Electrochimica Acta, Vol. 42 , pp. 1435-1440, 1997.
[113] 郭俊良,“製備奈米鈀活化液應用於無電電鍍製程之研究” ,碩士論文,國防大學中正理工學院化學工程學系,桃園,2007。
[114] Agarwala, R. C., Agarwala, V., “Electroless Alloy/Composite Coatings: A Review” Sādhanā, Vol. 28, pp. 475-493, 2003.
[115] Hsu, H. H., Hsie, C. C., Chen, M. H., Lin, S. J. and Yeh, J. W., “Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition,” J. Electrochem. Soc., Vol. 148, pp. C590-C598, 2001.
[116] Baylis, B. K. W., Busuttil, A., Hedgecock, N. E. and Schlesinger, M., “Tin (Ⅳ) Chloride Solution as a Sensitizer in Photoselective Metal Deposition,” J. Electrochem. Soc., Vol. 123, pp. 348-351, 1976.
[117] Cohen, R. L., Meek, R. L., “Process for Electroless Plating Using Colloid Sensitization and Acid Rinse,” U.S. Patent, 4,008,343, 1977.
[118] Cohen, R. L., West, K. W., “Generative and Stabilizing Process in Tin-Palladium Sol Sensitizers,” J. Electrochem. Soc., Vol. 120, pp. 502-508, 1973.
[119] Chen, L. J. and Wan, C. C., “Chemical Preparation of Pd Nanoparticles in Room Temperature Ethylene Glycol System and its Application to Electroless Copper Deposition,” Journal of Colloid and Interface Science, Vol. 297 , pp. 143-150, 2006.
[120] Lee, C. L. and Huang, Y. C., “Synthesis of Hydrophilic and Hydrophobic Pd Nanoparticles with In Situ Generated Reducing Agent and Their Application as Activator for Electroless Copper and Nickel Depositions,” Journal of The Electrochemical Society, Vol.152, pp.C520-C524, 2005.
[121] Wavhal, D. S., Fisher, E. R., “Modification of Polysulfone Ultrafiltration Membranes by CO2 Plasma Treatment,” Desalination, Vol. 172, pp. 189-205, 2005.
[122] Vanderhoff, J. W., “Well-Characterized Monodisperse Polystyrene Latexes as Model Colloids,” J. MACROMOL. SCI-CHEM., Vol. A7(3), pp. 677-707, 1973.
[123] Rodríguez, A.M., Vílchez, M. A. C., Álvarez, R. H., “Surface Characterization of Latexes with Different Interfacial Properties,” Colloids Surf A: Physicochem Eng Aspects, Vol. 108, pp. 263-271, 1996.
[124] Gonzalez, B. D., Alvarez, H. R., Nieves, F. J., “Electrokinetic Behavior of Polystyrene Latexes with DifferentSurface Groups: Effect of Heat Treatment,” J. Colloid Interface Sci., Vol. 177, pp. 372-379, 1996.
[125] Moore, R. G. C., Evans, S. D., Shen, T., Hodson, C. E. C., “Room-Temperature Single-Electron Tunneling in Surfactant Stabilized Iron Oxide Nanoparticles,” Physica E, Vol. 9, pp. 253-261, 2001.
[126] Lala, N.L., Deivaraj, T. C., Lee, J. Y., “Auto-Deposition of Gold on Chemically Modified Polystyrene Beads,” Colloids Surf. A: Physicochem Eng. Aspects, Vol. 269, pp. 119-124, 2005.
[127] Cao, L., Zhu, T., Liu, Z., “Formation Mechanism of Nonspherical Gold Nanoparticles During Seeding Growth: Roles of Anion Adsorption and Reduction Rate” J. Colloid Interface Sci., Vol. 293, pp. 69-76, 2006.
[128] Hsu, S. C., Don, T. M., Chiu, W. Y., “Free Radical Degradation of Chitosan with Potassium Persulfate,” Polymer Degradation and Stability, Vol. 75, pp. 73-83, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊