跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃啟展
研究生(外文):Chi-jan Huang
論文名稱:以溶劑揮發法從奈米碳管陣列製備奈米碳地毯:溶劑與碳管長度的影響
論文名稱(外文):Formation of carbon nanocarpet from carbon nanotube array by solvent evaporation:the effect of solvent and length of carbon nanotubes
指導教授:陳建忠陳建忠引用關係
指導教授(外文):Chien-chung Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:奈米碳管陣列奈米碳地毯
外文關鍵詞:carbon nanotube arraycarbon nanocarpet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文以溶劑揮發方式由奈米碳管陣列形成碳奈米地毯,奈米碳管陣列以熱化學氣相沉積法製備。我們使用光學顯微鏡觀察溶劑在碳管之間的揮發過程以及用SEM觀察溶劑揮發後的型態。
我們以丙酮潤濕碳管並且改變陣列碳管長度。溶劑揮發後形成蜂巢狀圖案。在碳管長度在5 μm到33 μm範圍內,隨著碳管變長,蜂巢狀結構的直徑明顯變大。牆壁的厚度也有稍微隨碳管變長而變厚。當碳管大於40 μm後,會出現長條狀的圖案。
我們也使用其它種類的溶劑潤濕奈米碳管陣列,使用的溶劑有二氯甲烷、氯仿、四氫
This research was studied on formation of carbon nanocarpet from carbon nanotube array by solvent evaporation. We observed morphology transition in real time by optical microscope and characterized the sample by SEM.
We wetted CNT array by acetone and changed the length of carbon nanotube array. The cellular structure was formed from CNT array during drying process. The diameter of cellular structure obviously increased with increasing the length of CNT ranging from 5 μm to 33 μm. The wall thickness also slightly increased with the length of CNT increasing. As the length of CNT was longer than 40 μm , it appeared stripe pattern.
We also wetted CNT array by other kinds of solvents. These solvents were dichloromethane, chloroform, THF, methanol, cyclohexane, ethanol and toluene. As the length of CNT was 33 μm, concentric circle pattern was formed from CNT arrays by dichloromethane, chloroform, THF or toluene. Cellular pattern was formed by methanol, cyclohexane or ethanol as the length of CNT was 33 μm.
第一章 緒論...............................1
1.1 奈米碳管之簡介 ........................1
1.2 奈米碳管之結構 ........................2
1.3 奈米碳管之合成方式....................4
1.4 奈米碳管之成長機制....................9
1.5 奈米碳管之力學性質...................12
第二章 文獻回顧..........................16
2.1以奈米碳管陣列形成碳奈米地毯..........19
2.2 奈米地毯的形成機制與控制形成的圖案...20
2.3 針對其它參數來形成奈米碳地毯的影響...25
第三章 研究動機..........................29
第四章 實驗設備與方法....................30
4.1儀器設備..............................30
4.2 藥品工具.............................35
4.3 實驗步驟.............................35
第五章 結果與討論........................38
5.1不同的陣列碳管長度....................38
5.2不同的揮發性溶劑......................48
5.3圖案的形成機制........................77
第六章 結論與未來展望....................81
參考文獻.................................83
附錄.....................................85
[1]Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C-60 - Buckminsterfullerene. Nature. 1985;318(6042):162-3.
[2]Iijima S. Helical microtubules of graphitic carbon. Nature. 1991 Nov;354(6348):56-8.
[3]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young''s modulus observed for individual carbon nanotubes. Nature. 1996 Jun;381(6584):678-80.
[4]Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors - graphic microtubules. Physical Review Letters. 1992 Mar;68(10):1579-81.
[5]Ruoff RS, Lorents DC. Mechanical and thermal-properties of carbon nanotubes. Carbon. 1995;33(7):925-30.
[6]Hone J, Whitney M, Piskoti C, Zettl A. Thermal conductivity of single-walled carbon nanotubes. Physical Review B. 1999 Jan;59(4):R2514-R6.
[7]Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, et al. Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters. 1999 Nov;75(20):3129-31.
[8]Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C. Carbon nanotube single-electron transistors at room temperature. Science. 2001 Jul;293(5527):76-9.
[9]Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Lu WM, et al. Hydrogen storage in aligned carbon nanotubes. Applied Physics Letters. 2001 Apr;78(15):2128-30.
[10]Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, et al. Nanotube molecular wires as chemical sensors. Science. 2000 Jan;287(5453):622-5.
[11]Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996 Jul;273(5274):483-7.
[12]Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, et al. Large-scale synthesis of aligned carbon nanotubes. Science. 1996 Dec;274(5293):1701-3.
[13]Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999 Jan;283(5401):512-4.
[14]Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. 1998 Nov;282(5391):1105-7.
[15]Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon. 1995;33(7):883-91.
[16]Saito Y, Nishikubo K, Kawabata K, Matsumoto T. Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of Applied Physics. 1996 Sep;80(5):3062-7.
[17]Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993 Jun;363(6430):603-5.
[18]Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature. 1992 Jul;358(6383):220-2.
[19]Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE. SELF-ASSEMBLY OF TUBULAR FULLERENES. Journal of Physical Chemistry. 1995 Jul;99(27):10694-7.
[20]Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters. 1995 Sep;243(1-2):49-54.
[21]Lee CJ, Park JH, Park J. Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chemical Physics Letters. 2000 Jun;323(5-6):560-5.
[22]Jang TK, Ahn JH, Lee YH, Ju BK. Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition. Chemical Physics Letters. 2003 May;372(5-6):745-9.
[23]Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science. 2004 Nov;306(5700):1362-4.
[24]Lee CJ, Park J, Yu JA. Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chemical Physics Letters. 2002 Jul;360(3-4):250-5.
[25]Grujicic M, Cao G, Gersten B. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2002 Jun;94(2-3):247-59.
[26]Merkulov VI, Guillorn MA, Lowndes DH, Simpson ML, Voelkl E. Shaping carbon nanostructures by controlling the synthesis process. Applied Physics Letters. 2001 Aug;79(8):1178-80.
[27]Li DC, Dai LM, Huang SM, Mau AWH, Wang ZL. Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters. 2000 Jan;316(5-6):349-55.
[28]Merkulov VI, Melechko AV, Guillorn MA, Lowndes DH, Simpson ML. Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Applied Physics Letters. 2001 Oct;79(18):2970-2.
[29]Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997 Sep;277(5334):1971-5.
[30]Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters. 1999 Feb;82(5):944-7.
[31]Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science. 1999 Mar;283(5407):1513-6.
[32]Lee SB, Koepsel R, Stolz DB, Warriner HE, Russell AJ. Self-assembly of biocidal nanotubes from a single-chain diacetylene amine salt. Journal of the American Chemical Society. 2004 Oct;126(41):13400-5.
[33]Fan JG, Dyer D, Zhang G, Zhao YP. Nanocarpet effect: Pattern formation during the wetting of vertically aligned nanorod arrays. Nano Letters. 2004 Nov;4(11):2133-8.
[34]Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, et al. Superhydrophobic carbon nanotube forests. Nano Letters. 2003 Dec;3(12):1701-5.
[35]Chakrapani N, Wei BQ, Carrillo A, Ajayan PM, Kane RS. Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proceedings of the National Academy of Sciences of the United States of America. 2004 Mar;101(12):4009-12.
[36]Liu H, Li SH, Zhai J, Li HJ, Zheng QS, Jiang L, et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angewandte Chemie-International Edition. 2004;43(9):1146-9.
[37]Gennes P-Gd, Brochard-Wyard F, Quere D. Capillarity and wetting phenomena :drops, bubbles, pearls, waves New York: Springer 2003.
[38]F.P. Beer ERJ, Jr., John T. DeWolf. Mechanics of materials. 4th ed. Boston: McGraw-Hill Higher Education 2006.
[39]Li QW, DePaula R, Zhang XF, Zheng LX, Arendt PN, Mueller FM, et al. Drying induced upright sliding and reorganization of carbon nanotube arrays. Nanotechnology. 2006 Sep;17(18):4533-6.
[40]Huang X, Zhou JJJ, Sansom E, Gharib M, Haur SC. Inherent-opening-controlled pattern formation in carbon nanotube arrays. Nanotechnology. 2007 Aug;18(30):6.
[41]Yan XB, Tay BK, Yang Y, Po WYK. Fabrication of three-dimensional ZnO-Carbon nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework. J Phys Chem C. 2007 Nov;111(46):17254-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top