跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/03 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許力介
研究生(外文):Li-Chieh Hsu
論文名稱:三氧化二鐵奈米線之製備及其應用
論文名稱(外文):Formation of the α-Fe2O3 nanowires and their applications
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:133
中文關鍵詞:三氧化二鐵奈米線熱氧化法磁特性場發射場效電晶體光偵測器
外文關鍵詞:thermal oxidation?Fe2O3 nanowiresphotodetectorfield effect transistorfield emissionmagnetic properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:765
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的是利用熱氧化法(thermal oxidation)製備一維的三氧化二鐵(?Fe2O3)的奈米線材以及探討在電、磁與光電方面的應用。研究內容主要分為製造與應用兩部分;在製造部份將所合成的三氧化二鐵奈米線做材料檢測與控制生長密度及生長方向,在應用部分主要研究三氧化二鐵奈米線在磁(異相磁阻)、電(場發射及場效電晶體)與光電(可見光偵測器)特性之應用。
第二章中主要是利用熱氧化法在50 nm鐵膜上生長單晶三氧化二鐵奈米線,其氧化溫度為350oC恆溫半小時。由SEM檢測後發現產物之直徑約在8–25 nm,長約數個微米。將產物以TEM與XPS做檢測,可發現產物為單晶的三氧化二鐵奈米線,且其生長方向為[110]。利用磁力顯微鏡(MFM)可在室溫下觀察到磁矩存在於單根線材內。另外,由磁阻的檢測可知,室溫下三氧化二鐵奈米線之異相磁阻率約在0.5%。
在第三章中,利用不同的鐵膜厚度以熱氧化法生長不同密度之三氧化二鐵奈米線;當鐵膜的厚度越厚,熱氧化法後的奈米線密度就越大。其影響密度之原因推測與熱氧化速率、鐵膜的缺陷及特定方向之氧擴散有關。另外,利用導電式原子力顯微鏡(CAFM)量測單根三氧化二鐵奈米線之電阻約為4.42×103 Ωcm。我們利用兩平板系統探討三氧化二鐵奈米線之場發射應用,當線材密度在中等密度時,其最低的起始電場(turn on field)為3.3 V/μm且能得到最大的場發電流密度約10-3 mA/cm2。
在第四章中,利用熱氧化法在150 nm的鐵膜上,側向生長單根的三氧化二鐵奈米橋,將兩電極連結在一起,其氧化溫度為350 oC恆溫一個小時。所生長的奈米橋直徑約7nm,長度約170nm。利用微米級的探針直接量測單根三氧化二鐵奈米橋之電性,且利用此結構將三氧化二鐵應用於場效電晶體。由量測結果可知我們所生長的三氧化二鐵奈米橋為N型半導體,且其導電度約為1.67 S/cm。
第五章主要是利用熱氧化法,在氧化溫度為350 oC時,側向生長單根的三氧化二鐵奈米橋在兩電極間而形成奈米橋光偵測器。奈米橋光偵測器之直徑約8nm,長度約240nm。利用不同波長的光(300 nm–800 nm)以0.5 mW/cm2照射三氧化二鐵奈米橋光偵測器來量測光電流效應。當以490 nm的光照射三氧化二鐵奈米橋時,能產生最大的光電流(123 nA)、增益(gain=2.9×107)與最大的on/off ratio約12。因為三氧化二鐵奈米橋光偵測器具有奈米級的直徑與極大的比表面積(surface-to-volume),所以其應答時間(response time)小於20 ms。此外,我們在不同環境下(空氣、真空與氬氣下)以藍光(420 nm)LED閃爍(2.5Hz)光源量測奈米橋光偵測器,結果發現奈米橋對氧氣的吸附會影響光偵測器的應答時間。
The research includes the studies of the synthesis of these?Fe2O3 nanowires (NWs) vertically/laterally and explores their applications. Fundamentals of ?Fe2O3 nanomaterial were reviewed in Chapter 1. The structure of ?Fe2O3 NWs and their anisotropic magnetroresistance, field emission, field effect transistor and visible light photodetector applications were systematically study and reported in chapter 2-5, respectively.
In Chapter 2, single–crystalline hexagonal ?Fe2O3 NWs were synthesized on a 50 nm iron thin film by thermal oxidation within 30 minutes at 250oC in air. SEM images show that the diameters of ?Fe2O3 NWs were about 8 – 25 nm, and the lengths were up to a few μm. TEM analysis revealed that the NWs had a hexagonal crystal structure with the growth direction of [110]. Magnetic force microscopy (MFM) analysis of a single ?Fe2O3 NW revealed that the direction of the magnetic domains was along the wire axis at room temperature. In addition, the results of magnetoresistance (MR) revealed that the anisotropic magnetoresistance (AMR) of ?Fe2O3 NWs reached 0.5% at 300 K.
In Chapter 3, ?Fe2O3 NWs were formed by the thermal oxidation of an iron film in air at 350 oC for 10 hours. The rhombohedral structure of the ?Fe2O3 NWs was grown vertically on the substrate with diameters of 8–25 nm and lengths of several hundred nm. It was found that the population density of the NWs per unit area (DNWs) can be varied by the film thickness. The thicker the iron film, the more NWs were grown. The growth mechanism of the NWs is suggested to be a combination effect of the thermal oxidation rate, defects on the film, and selective directional growth. The electrical resistivity of a single NW with a length of 800nm and a diameter of 15nm was measured to be 4.42×103 Ωcm using conductive atomic force microscopy. The field emission characteristics of the NWs were studied using a two–parallel–plate system. A low turn–on field of 3.3 V/μm and a large current density of 10-3 A/cm2 (under an applied field of about 7 V/μm) can be obtained using optimal factors of DNWs in the cathode.
In Chapter 4, an ?Fe2O3 nanobridge (NB) was laterally grown via the one–step thermal oxidation of 150 nm Fe film at 350 oC for 1hr in air atmosphere to form a NB field effect transistor (FET). The diameter of the as–grown NB was 7 nm, with a length of 170 nm. The electrical properties of the individual ?Fe2O3 NB were directly measured by microprobing the NB FET. The results show that the NB demonstrated n–type semiconductive behavior with a conductivity of 1.67 S/cm.
In Chapter 5, a single crystalline ?Fe2O3 nanobridge (NB) was laterally grown between two electrodes by one–step thermal oxidation of 100 nm Fe film at 350 oC in air atmosphere to form a NB photodector. The diameter of the as–grown NB was 8 nm, while the length of the NB was about 240 nm. The photocurrents of an individual ?Fe2O3 NB photodetector were invenstigated with the illumination of the visible light (wavelength: 300nm–800nm). With a light intensity of 0.5 mW/cm2, the photocurrent of the NB photodetector was increased by two orders of magnitude. The rapid photoresponse time (< 20ms), high gain (2.9×107) and high on/off ratio (>12) of an individual ?Fe2O3 NB photodetector can be attributed to the small diameter and high surface-to-volume of the NB. In addition, photocurrent measurements in various ambient (air, Ar and vacuum) demonstrate that the absorption of the oxygen at the surface of the NB can significantly influence the photoresponse of the ?Fe2O3 NB photodetector.
Abstract I
中文摘要 III
Contents V
List of Table VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Introduction of one–dimensional material 1
1.2 Brief Introduction of Iron Oxide material 3
1.3 Synthesis of ?Fe2O3 nanowires 6
1.4 Growth mechanism of ?Fe2O3 nanowires 11
1.5 Characteristics of 1-D ?Fe2O3 nanostructure 13
1.5.1 Magnetic property of 1-D ?Fe2O3 nanostructure 13
1.5.2 Electrical property of 1-D ?Fe2O3 nanostructure 18
1.6 Applications of ?Fe2O3 nanomaterials 22
1.6.1 Anisotropic Magnetoresistance (AMR) 22
1.6.2 Field Emission (FE) 24
1.6.3 Field Effect Transistor (FET) 30
1.6.4 Photodetector 33
1.7 Objective and Outlines 36
Chapter 2 Thermal growth and magnetic characterization of ?Fe2O3 nanowires 37
2.1 Introduction 37
2.2 Experimental 39
2.3 Results and discussion 40
2.4 Conclusion 53
2.5 Acknowledgment 53
Chapter 3 Synthesis, electrical measurement, and field emission properties of ?Fe2O3 nanowires 54
3.1 Introduction 54
3.2 Experimental 56
3.3 Results and discussion 57
3.4 Conclusion 75
3.5 Acknowledgement 75
Chapter 4 Direct electrical measurement of an individual ?Fe2O3 nanobridge field effect transistor formed via one–step thermal oxidation 76
4.1 Introduction 76
4.2 Experimental 78
4.3 Results and discussion 80
4.4 Conclusion 89
4.5 Acknowledgement 89
Chapter 5 On-chip fabrication of an individual ?Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching 90
5.1 Introduction 90
5.2 Experimental 92
5.3 Results and discussion 94
5.4 Conclusion 103
5.5 Acknowledgement 103
Chapter 6 Concluding Remarks and Future Researches 104
6.1 Concluding Remarks 104
6.2 Future Researches 106
References 107
Appendix 2.1 120
Appendix 2.2 125
Appendix 2.3 127
Appendix 3.1 129
Publication list 131
Patent list 131
Conferences 132
[1] Edelstein, A. S. and Carmmarata, R. C., 1996, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Philadelphia.
[2] Nalwa, H. S., 2000, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, New York.
[3] Shalaev, V. M. and Moskovits, M., 1997, Nanostructured Materials: Clusters, Compsites, and Thin Films, American Chemical Society, Washington.
[4] Iijima, S., "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58
[5] Morales, A. M. and Lieber, C. M., "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science, 1998, 279, 208-211
[6] Yang, P. D. and Lieber, C. M., "Nanorod-superconductor composites: A pathway to materials with high critical current densities", Science, 1996, 273, 1836-1840
[7] Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F. and Yan, Y. Q., "One-dimensional nanostructures: Synthesis, characterization, and applications", Adv. Mater., 2003, 15, 353-389
[8] Spencer, P. J. and Kubaschewski, O., "THERMODYNAMIC ASSESSMENT OF IRON-OXYGEN SYSTEM", Calphad-Comput. Coupling Ph. Diagrams Thermochem., 1978, 2, 147-167
[9] Fu, Y. Y., Wang, R. M., Xu, J., Chen, J., Yan, Y., Narlikar, A. and Zhang, H., "Synthesis of large arrays of aligned alpha-Fe2O3 nanowires", Chem. Phys. Lett., 2003, 379, 373-379
[10] Cornell, R. M. and Schwertmann, U., 2003, The Iron Oxides-structure, properties, reactions, occurrences and uses 2nd ed., Wiley-VCH,
[11] Liu, L., Kou, H.-Z., Mo, W., Liu, H. and Wang, Y., "Surfactant-assisted synthesis of ?Fe2O3 nanorubes and nanorods with shape-dependent magnetic properties", J. Phys. Chem. B, 2006, 110, 15218-15223
[12] Pu, Z. F., Cao, M. H., Jing, Y., Huang, K. L. and Hu, C. W., "Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes", Nanotechnology, 2006, 17, 799-804
[13] Wen, X., Wang, S., Ding, Y., Wang, Z. L. and Yang, S., "Controlled growth of large-area, uniform, vertically aligned arrays of ?Fe2O3 nanobelts and nanowires", J. Phys. Chem. B, 2005, 109, 215-220
[14] Wu, J. J., Lee, Y. L., Chiang, H. H. and Wong, D. K. P., "Growth and magnetic properties of oriented alpha-Fe2O3 nanorods", J. Phys. Chem. B, 2006, 110, 18108-18111
[15] Tadagi, R., "Growth of oxide whiskers on metals at high temperature", J. Phys. Soc. Jpn., 1957, 12, 1212-1218
[16] Richard, L. T. and Earl, A. G., "Crystal Morphology and Mechanisms of Growth of Alpha-Fe[sub 2]O[sub 3] Whiskers on Iron", J. Electrochem. Soc., 1967, 114, 1227-1230
[17] Fu, Y., Chen, J. and Zhang, H., "Synthesis of Fe2O3 nanowires by oxidation of iron", Chem. Phys. Lett., 2001, 350, 491-494
[18] Srivastava, H., Tiwari, P., Srivastava, A. K. and Nandedkar, R. V., "Growth and characterization of alpha-Fe2O3 nanowires", J. Appl. Phys., 2007, 102,
[19] Pan, C., Zhang, Z., Su, X., Zhao, Y. and Liu, J., "Characterization of Fe nanorods grown directly from submicron-sized iron grains by thermal evaporation ", Phys. Rev. B, 2004, 70, 233404
[20] Zhao, Y. M., Li, Y.-H., Ma, R. Z., Roe, M. J., McCartney, D. G. and Zhu, Y. Q., "Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction", Small, 2006, 2, 422-427
[21] Yu, T., Zhu, Y. W., Xu, X. J., Yeong, K. S., Shen, Z. X., Chen, P., Lim, C. T., Thong, J. T. L. and Sow, C. H., "Substrate-friendly synthesis of metal oxide nanostructures using a hotplate", Small, 2006, 2, 80-84
[22] Hsu, L. C., Li, Y. Y., Lo, C. G., Huang, C. W. and Chern, G., "Thermal growth and magnetic characterization of alpha-Fe2O3 nanowires", J. Phys. D-Appl. Phys., 2008, 41, 185003
[23] Hsu, L.-C. and Li, Y.-Y., "Direct electrical measurement of an individual alpha -Fe[sub 2]O[sub 3] nanobridge field effect transistor formed via one-step thermal oxidation", Appl. Phys. Lett., 2008, 93, 083113-083113
[24] Hsu, L.-C., Li, Y.-Y. and Hsiao, C.-Y., "Synthesis, Electrical Measurement, and Field Emission Properties of ?Fe2O3 Nanowires", Nanoscale Res. Lett., 2008, 3, 330-337
[25] Zhu, Y. W., Yu, T., Sow, C. H., Liu, Y. J., Wee, A. T. S., Xu, X. J., Lim, C. T. and Thong, J. T. L., "Efficient field emission from alpha-Fe2O3 nanoflakes on an atomic force microscope tip", Appl. Phys. Lett., 2005, 87, 023103
[26] Catti, M., Valerio, G. and Dovesi, R., "Theoretical-study of electronic, magnetic, and structural-properties of alpha-Fe2O3 (hematite)", Phys. Rev. B, 1995, 51, 7441-7450
[27] Zysler, R. D., Fiorani, D. and Testa, A. M., "Investigation of magnetic properties of interacting Fe2O3 nanoparticles", J. Magn. Magn. Mater., 2001, 224, 5-11
[28] Zhang, L. Y., Xue, D. S., Xu, X. F., Gui, A. B. and Gao, C. X., "The fabrication and magnetic properties of nanowire-like iron oxide", J. Phys.-Condes. Matter, 2004, 16, 4541-4548
[29] Tang, B., Wang, G., Zhuo, L., Ge, J. and Cui, L., "Facile route to ?FeOOH and?Fe2O3 nanorods and magnetic property of ?Fe2O3 nanorods", Inorg. Chem., 2006, 45, 5196-5200
[30] Chueh, Y. L., Lai, M. W., Liang, J. Q., Chou, L. J. and Wang, Z. L., "Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process", Adv. Funct. Mater., 2006, 16, 2243-2251
[31] http://en.wikipedia.org/wiki/SQUID,
[32] http://en.wikipedia.org/wiki/Vibrating_Sample_Magnetometer,
[33] http://en.wikipedia.org/wiki/Magnetic_force_microscopy,
[34] Hsu, L. C., Li, Y. Y., Lo, C. G., Huang, C. W. and Chern, G., "Thermal growth and magnetic characterization of alpha-Fe2O3 nanowires", J. Phys. D-Appl. Phys., 2008, 41,
[35] Kim, C. H., Chun, H. J., Kim, D. S., Kim, S. Y. and Park, J., "Magnetic anisotropy of vertically aligned ?Fe2O3 nanowire array", Appl. Phys. Lett., 2006, 89, 223103
[36] Xu, Y. Y., Rui, X. F., Fu, Y. Y. and Zhang, H., "Magnetic properties of ?Fe2O3 nanowires", Chem. Phys. Lett., 2005, 410, 36-38
[37] Kim, J. and Anderson, W. A., "Direct electrical measurement of the self-assembled nickel silicide nanowire", Nano Lett. , 2006, 6, 1356-1359
[38] Lee, J. S., Islam, M. S. and Kim, S., "Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method", Nano Lett., 2006, 6, 1487-1490
[39] Fan, Z. Y., Wen, X. G., Yang, S. H. and Lu, J. G., "Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors", Appl. Phys. Lett., 2005, 87, 013113
[40] Koo, S. M., Fujiwara, A., Han, J. P., Vogel, E. M., Richter, C. A. and Bonevich, J. E., "High inversion current in silicon nanowire field effect transistors", Nano Lett., 2004, 4, 2197-2201
[41] Schlenker, E., Bakin, A., Postels, B., Mofor, A. C., Wehmann, H. H., Weimann, T., Hinze, P. and Waag, A., "Electrical characterization of ZnO nanorods", Physica E, 2007, 244, 1473-1477
[42] Adeyeye, A. O. and White, R. L., "Magnetoresistance behavior of single castellated Ni80Fe20 nanowires", J. Appl. Phys., 2004, 95, 2025-2028
[43] Liu, I., Wu, Y. H., Long, H. H., Liu, Z. J., Zheng, Y. K. and Adeyeye, A. O., "Transport properties and micromagnetic modeling of magnetic nanowires with multiple constrictions", Thin Solid Films, 2006, 505, 35-40
[44] Lee, J. S., Islam, M. S. and Kim, S., "Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method", Nano Lett. , 2006, 6, 1487-1490
[45] Bhuvana, T. and Kulkarni, G. U., "Highly conducting patterned Pd nanowires by direct-write electron beam lithography", Acs Nano, 2008, 2, 457-462
[46] Juhasz, R., Elfstrom, N. and Linnros, J., "Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction", Nano Lett., 2005, 5, 275-280
[47] Takai, K. and Enoki, T., "Fabrication of graphitic nanowire structure by electron beam lithography", Physica E 2007, 40, 321-323
[48] Dieckmann, R., "Point-Defects and Transport in Hematite (Fe2o3-Epsilon)", Philos. Mag. A, 1993, 68, 725-745
[49] Lee, Y. C., Chueh, Y. L., Hsieh, C. H., Chang, M. T., Chou, L. J., Wang, Z. L., Lan, Y. W., Chen, C. D., Kurata, H. and Isoda, S., "p-Type alpha-Fe2O3 Nanowires and their n-Type Transition in a Reductive Ambient", Small, 2007, 3, 1356-1361
[50] Cesar, I., Kay, A., Martinez, J. A. G. and Gratzel, M., "Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping ", J. Am. Chem. Soc., 2006, 128, 4582-4583
[51] Chauhan, P., Annapoorni, S. and Trikha, S. K., "Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing", Thin Solid Films, 1999, 346, 266-268
[52] Frank, S. N. and Bard, A. J., "Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous-Solutions at Semiconductor Powders", J. Phys. Chem., 1977, 81, 1484-1488
[53] Ohmori, T., Takahashi, H., Mametsuka, H. and Suzuki, E., "Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent", Phys. Chem. Chem. Phys., 2000, 2, 3519-3522
[54] Beermann, N., vayssieres, L., Lindquist, S. E. and Hagfeldt, A., "Photoelectrochemical studies of oriented nanorod thin films of hematite", J. Electrochem. Soc., 2000, 147, 2456-2461
[55] http://en.wikipedia.org/wiki/Magnetoresistance,
[56] Giuliani, G., "A general law for electromagnetic induction", EPL, 2008, 81,
[57] Ohgai, T., Gravier, L., Hoffer, X., Lindeberg, M., Hjort, K., Spohr, R. and Ansermet, J. P., "Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios", J. Phys. D-Appl. Phys., 2003, 36, 3109-3114
[58] Ohgai, T., Enculescu, I., Zet, C., Westerberg, L., Hjort, K., Spohr, R. and Neumann, R., "Magneto-sensitive nickel nanowires fabricated by electrodeposition into multi- and single-ion track templates", J. Appl. Electrochem., 2006, 36, 1157-1162
[59] Seong, H. K., Kim, J. Y., Kim, J. J., Lee, S. C., Kim, S. R., Kim, U., Park, T. E. and Choi, H. J., "Room-Temperature Ferromagnetism in Cu Doped GaN Nanowires", Nano Lett., 2007, 7, 3366-3371
[60] Burgess, R. E., Kroemer, H. and Houston, J. M., "CORRECTED VALUES OF FOWLER-NORDHEIM FIELD EMISSION FUNCTIONS V(Y) AND S(Y)", Physical Review, 1953, 90, 515-515
[61] Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J. M. and Kern, K., "Scanning field emission from patterned carbon nanotube films", Appl. Phys. Lett., 2000, 76, 2071-2073
[62] Gao, H., Mu, C., Wang, F., Xu, D. S., Wu, K., Xie, Y. C., Liu, S., Wang, E. G., Xu, J. and Yu, D. P., "Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template", J. Appl. Phys., 2003, 93, 5602-5605
[63] Bonard, J. M., Croci, M., Arfaoui, I., Noury, O., Sarangi, D. and Chatelain, A., "Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?", Diam. Relat. Mat., 2002, 11, 763-768
[64] Jo, S. H., Lao, J. Y., Ren, Z. F., Farrer, R. A., Baldacchini, T. and Fourkas, J. T., "Field-emission studies on thin films of zinc oxide nanowires", Appl. Phys. Lett., 2003, 83, 4821-4823
[65] Zhu, Y. W., Yu, T., Cheong, F. C., Xui, X. J., Lim, C. T., Tan, V. B. C., Thong, J. T. L. and Sow, C. H., "Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films", Nanotechnology, 2005, 16, 88-92
[66] Zeng, B. Q., Xiong, G. Y., Chen, S., Wang, W. Z., Wang, D. Z. and Ren, Z. F., "Field emission of silicon nanowires grown on carbon cloth", Appl. Phys. Lett., 2007, 90, 033112-033112-033113
[67] Chen, P. L., Chang, J. K., Kuo, C. T. and Pan, F. M., "Field emission of carbon nanotubes on anodic aluminum oxide template with controlled tube density", Applied Physics Letters, 2005, 86,
[68] Bonard, J. M., Weiss, N., Kind, H., Stockli, T., Forro, L., Kern, K. and Chatelain, A., "Tuning the field emission properties of patterned carbon nanotube films", Adv. Mater., 2001, 13, 184-188
[69] Yeon, S. C., Sung, W. Y., Kim, W. J., Lee, S. M., Lee, H. Y. and Kim, Y. H., "Field emission characteristics of CuO nanowires grown on brown-oxide-coated Cu films on Si substrates by conductive heating in air", J. Vac. Sci. Technol. B, 2006, 24, 940-944
[70] Zheng, Z., Chen, Y. Z., Shen, Z. X., Ma, J., Sow, C. H., Huang, W. and Yu, T., "Ultra-sharp alpha-Fe2O3 nanoflakes: growth mechanism and field-emission", Appl. Phys. A-Mater. Sci. Process., 2007, 89, 115-119
[71] Schon, G., "Quantum engineering - Superconducting nanowires", Nature, 2000, 404, 948-949
[72] Tans, S. J., Verschueren, A. R. M. and Dekker, C., "Room-temperature transistor based on a single carbon nanotube", Nature, 1998, 393, 49-52
[73] Martel, R., Schmidt, T., Shea, H. R., Hertel, T. and Avouris, P., "Single- and multi-wall carbon nanotube field-effect transistors", Appl. Phys. Lett., 1998, 73, 2447-2449
[74] Bae, H. S., Choi, C. M., Kim, J. H. and Im, S., "Dynamic and static photoresponse of ultraviolet-detecting thin-film transistors based on transparent NiOx electrodes and an n-ZnO channel", J APPL PHYS, 2005, 97,
[75] Li, Q. H., Wan, Q., Liang, Y. X. and Wang, T. H., "Electronic transport through individual ZnO nanowires", Appl. Phys. Lett., 2004, 84, 4556-4558
[76] Zheng, X. G., Li, Q. S., Zhao, J. P., Chen, D., Zhao, B., Yang, Y. J. and Zhang, L. C., "Photoconductive ultraviolet detectors based on ZnO films", APPL SURF SCI, 2006, 253, 2264-2267
[77] Jie, J. S., Zhang, W. J., Jiang, Y., Meng, X. M., Li, Y. Q. and Lee, S. T., "Photoconductive characteristics of single-crystal CdS nanoribbons", Nano Lett., 2006, 6, 1887-1892
[78] Wang, D. S., Hao, C. H., Zheng, W., Peng, Q., Wang, T. H., Liao, Z. M., Yu, D. P. and Li, Y. D., "Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors", Adv. Mater. , 2008, 20, 2628-+
[79] Fu, X. Q., Wang, C., Feng, P. and Wang, T. H., "Anomalous photoconductivity of CeO2 nanowires in air", Appl. Phys. Lett., 2007, 91,
[80] Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y., Lo, Y. H. and Wang, D., "ZnO nanowire UV photodetectors with high internal gain", Nano Lett., 2007, 7, 1003-1009
[81] Law, J. B. K. and Thong, J. T. L., "Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time", Appl. Phys. Lett., 2006, 88,
[82] Lee, J. S., Islam, M. S. and Kim, S., "Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method", Sens. Actuator B-Chem., 2007, 73-77
[83] Hsieh, C. H., Chou, L. J., Lin, G. R., Bando, Y. and Golberg, D., "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires", Nano Lett., 2008, 8, 3081-3085
[84] Wu, C. Z., Yin, P., Zhu, X., OuYang, C. Z. and Xie, Y., "Synthesis of hematite (alpha-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors", J. Phys. Chem. B, 2006, 110, 17806-17812
[85] Hansen, M. F., Koch, C. B. and Morup, S., "Magnetic dynamics of weakly and strongly interacting hematite nanoparticles", Phys. Rev. B, 2000, 62, 1124-1135
[86] Chen, J., Xu, L. N., Li, W. Y. and Gou, X. L., "alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications", Adv. Mater., 2005, 17, 582-586
[87] Sun, Z. Y., Yuan, H. Q., Liu, Z. M., Han, B. X. and Zhang, X. R., "A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates", Adv. Mater., 2005, 17, 2993-2997
[88] Woo, K., Lee, H. J., Ahn, J. P. and Park, Y. S., "Sol-gel mediated synthesis of Fe2O3 nanorods", Adv. Mater., 2003, 15, 1761-1764
[89] Lillehei, P. T., Park, C., Rouse, J. H. and Siochi, E. J., "Imaging carbon nanotubes in high performance polymer composites via magnetic force microscopy", Nano Lett., 2002, 2, 827-829
[90] Sorop, T. G., Untiedt, C., Luis, F., Kroll, M., Rasa, M. and de Jongh, L. J., "Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy", Phys. Rev. B, 2003, 67, 014402
[91] Ebels, U., Radulescu, A., Henry, Y., Piraux, L. and Ounadjela, K., "Spin accumulation and domain wall magnetoresistance in 35 nm Co wires", Phys. Rev. Lett., 2000, 84, 983-986
[92] Tsoi, M., Fontana, R. E. and Parkin, S. S. P., "Magnetic domain wall motion triggered by an electric current", Appl. Phys. Lett., 2003, 83, 2617-2619
[93] Radulescu, A., Ebels, U., Henry, Y., Ounadjela, K., Duvail, J. L. and Piraux, L., "Magnetoresistance of a single domain wall in Co and Ni nanowires", IEEE Trans. Magn., 2000, 36, 3062-3064
[94] Vila, L., George, J. M., Faini, G., Popa, A., Ebels, U., Ounadjela, K. and Piraux, L., "Transport and magnetic properties of isolated cobalt nanowires", IEEE Trans. Magn., 2002, 38, 2577-2579
[95] Hernandez-Ramirez, F., Tarancon, A., Casals, O., Pellicer, E., Rodriguez, J., Romano-Rodriguez, A., Morante, J. R., Barth, S. and Mathur, S., "Electrical properties of individual tin oxide nanowires contacted to platinum electrodes", Phys. Rev. B, 2007, 76, 085429-085433
[96] Seong, H. K., Kim, J. Y., Kim, J. J., Lee, S. C., Kim, S. R., Kim, U., Park, T. E. and Choi, H. J., "Room-temperature ferromagnetism in cu doped GaN nanomores", Nano Lett., 2007, 7, 3366-3371
[97] Nebeschutz, M., Cimalla, V., Ambacher, O., Machleidt, T., Ristic, J. and Calleja, E., "Electrical performance of gallium nitride nanocolumns", Physica E, 2007, 37, 200-203
[98] Hsu, L.-C., Li, Y.-Y., Lo, C. G., Huang, C. W. and Chern, G., "Thermal growth and magnetic characterization of the ?Fe2O3 nanowires", J. Phys. D-Appl. Phys., 2008,
[99] Takagi, R., J. Phys. Soc. Jpn., 1957, 12, 1212-1218
[100] Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J. and Dai, H. J., "Nanotube molecular wires as chemical sensors", Science, 2000, 287, 622-625
[101] Kelzenberg, M. D., Turner-Evans, D. B., Kayes, B. M., Filler, M. A., Putnam, M. C., Lewis, N. S. and Atwater, H. A., "Photovoltaic measurements in single-nanowire silicon solar cells", Nano Lett., 2008, 8, 710-714
[102] Hsu, L.-C., Li, Y.-Y. and Hsiao, C.-Y., "Synthesis, electrical measurement and field emission property of ?Fe2O3 nanowires", Nanoscale Res. Lett., 2008,
[103] Huang, Y., Duan, X. F. and Lieber, C. M., "Nanowires for integrated multicolor nanophotonics", Small, 2005, 1, 142-147
[104] Law, M., Kind, H., Messer, B., Kim, F. and Yang, P. D., "Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature", Angew. Chem.-Int. Edit., 2002, 41, 2405-2408
[105] Hayden, O., Agarwal, R. and Lieber, C. M., "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection", Nat. Mater., 2006, 5, 352-356
[106] Millo, O., Katz, D., Steiner, D., Rothenberg, E., Mokari, T., Kazes, M. and Banin, U., "Charging and quantum size eiiects in tunnelling and optical spectroscopy of CdSe nanorods", Nanotechnology, 2004, 15, R1-R6
[107] Chen, R. S., Chen, H. Y., Lu, C. Y., Chen, K. H., Chen, C. P., Chen, L. C. and Yang, Y. J., "Ultrahigh photocurrent gain in m-axial GaN nanowires", Appl. Phys. Lett., 2007, 91,
[108] Razeghi, M. and Rogalski, A., "Semiconductor ultraviolet detectors", J. Appl. Phys. , 1996, 79, 7433-7473
[109] Kind, H., Yan, H. Q., Messer, B., Law, M. and Yang, P. D., "Nanowire ultraviolet photodetectors and optical switches", Adv. Mater., 2002, 14, 158-160
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊