|
[1] Edelstein, A. S. and Carmmarata, R. C., 1996, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Philadelphia. [2] Nalwa, H. S., 2000, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, New York. [3] Shalaev, V. M. and Moskovits, M., 1997, Nanostructured Materials: Clusters, Compsites, and Thin Films, American Chemical Society, Washington. [4] Iijima, S., "Helical Microtubules of Graphitic Carbon", Nature, 1991, 354, 56-58 [5] Morales, A. M. and Lieber, C. M., "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science, 1998, 279, 208-211 [6] Yang, P. D. and Lieber, C. M., "Nanorod-superconductor composites: A pathway to materials with high critical current densities", Science, 1996, 273, 1836-1840 [7] Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F. and Yan, Y. Q., "One-dimensional nanostructures: Synthesis, characterization, and applications", Adv. Mater., 2003, 15, 353-389 [8] Spencer, P. J. and Kubaschewski, O., "THERMODYNAMIC ASSESSMENT OF IRON-OXYGEN SYSTEM", Calphad-Comput. Coupling Ph. Diagrams Thermochem., 1978, 2, 147-167 [9] Fu, Y. Y., Wang, R. M., Xu, J., Chen, J., Yan, Y., Narlikar, A. and Zhang, H., "Synthesis of large arrays of aligned alpha-Fe2O3 nanowires", Chem. Phys. Lett., 2003, 379, 373-379 [10] Cornell, R. M. and Schwertmann, U., 2003, The Iron Oxides-structure, properties, reactions, occurrences and uses 2nd ed., Wiley-VCH, [11] Liu, L., Kou, H.-Z., Mo, W., Liu, H. and Wang, Y., "Surfactant-assisted synthesis of ?Fe2O3 nanorubes and nanorods with shape-dependent magnetic properties", J. Phys. Chem. B, 2006, 110, 15218-15223 [12] Pu, Z. F., Cao, M. H., Jing, Y., Huang, K. L. and Hu, C. W., "Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes", Nanotechnology, 2006, 17, 799-804 [13] Wen, X., Wang, S., Ding, Y., Wang, Z. L. and Yang, S., "Controlled growth of large-area, uniform, vertically aligned arrays of ?Fe2O3 nanobelts and nanowires", J. Phys. Chem. B, 2005, 109, 215-220 [14] Wu, J. J., Lee, Y. L., Chiang, H. H. and Wong, D. K. P., "Growth and magnetic properties of oriented alpha-Fe2O3 nanorods", J. Phys. Chem. B, 2006, 110, 18108-18111 [15] Tadagi, R., "Growth of oxide whiskers on metals at high temperature", J. Phys. Soc. Jpn., 1957, 12, 1212-1218 [16] Richard, L. T. and Earl, A. G., "Crystal Morphology and Mechanisms of Growth of Alpha-Fe[sub 2]O[sub 3] Whiskers on Iron", J. Electrochem. Soc., 1967, 114, 1227-1230 [17] Fu, Y., Chen, J. and Zhang, H., "Synthesis of Fe2O3 nanowires by oxidation of iron", Chem. Phys. Lett., 2001, 350, 491-494 [18] Srivastava, H., Tiwari, P., Srivastava, A. K. and Nandedkar, R. V., "Growth and characterization of alpha-Fe2O3 nanowires", J. Appl. Phys., 2007, 102, [19] Pan, C., Zhang, Z., Su, X., Zhao, Y. and Liu, J., "Characterization of Fe nanorods grown directly from submicron-sized iron grains by thermal evaporation ", Phys. Rev. B, 2004, 70, 233404 [20] Zhao, Y. M., Li, Y.-H., Ma, R. Z., Roe, M. J., McCartney, D. G. and Zhu, Y. Q., "Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction", Small, 2006, 2, 422-427 [21] Yu, T., Zhu, Y. W., Xu, X. J., Yeong, K. S., Shen, Z. X., Chen, P., Lim, C. T., Thong, J. T. L. and Sow, C. H., "Substrate-friendly synthesis of metal oxide nanostructures using a hotplate", Small, 2006, 2, 80-84 [22] Hsu, L. C., Li, Y. Y., Lo, C. G., Huang, C. W. and Chern, G., "Thermal growth and magnetic characterization of alpha-Fe2O3 nanowires", J. Phys. D-Appl. Phys., 2008, 41, 185003 [23] Hsu, L.-C. and Li, Y.-Y., "Direct electrical measurement of an individual alpha -Fe[sub 2]O[sub 3] nanobridge field effect transistor formed via one-step thermal oxidation", Appl. Phys. Lett., 2008, 93, 083113-083113 [24] Hsu, L.-C., Li, Y.-Y. and Hsiao, C.-Y., "Synthesis, Electrical Measurement, and Field Emission Properties of ?Fe2O3 Nanowires", Nanoscale Res. Lett., 2008, 3, 330-337 [25] Zhu, Y. W., Yu, T., Sow, C. H., Liu, Y. J., Wee, A. T. S., Xu, X. J., Lim, C. T. and Thong, J. T. L., "Efficient field emission from alpha-Fe2O3 nanoflakes on an atomic force microscope tip", Appl. Phys. Lett., 2005, 87, 023103 [26] Catti, M., Valerio, G. and Dovesi, R., "Theoretical-study of electronic, magnetic, and structural-properties of alpha-Fe2O3 (hematite)", Phys. Rev. B, 1995, 51, 7441-7450 [27] Zysler, R. D., Fiorani, D. and Testa, A. M., "Investigation of magnetic properties of interacting Fe2O3 nanoparticles", J. Magn. Magn. Mater., 2001, 224, 5-11 [28] Zhang, L. Y., Xue, D. S., Xu, X. F., Gui, A. B. and Gao, C. X., "The fabrication and magnetic properties of nanowire-like iron oxide", J. Phys.-Condes. Matter, 2004, 16, 4541-4548 [29] Tang, B., Wang, G., Zhuo, L., Ge, J. and Cui, L., "Facile route to ?FeOOH and?Fe2O3 nanorods and magnetic property of ?Fe2O3 nanorods", Inorg. Chem., 2006, 45, 5196-5200 [30] Chueh, Y. L., Lai, M. W., Liang, J. Q., Chou, L. J. and Wang, Z. L., "Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid process", Adv. Funct. Mater., 2006, 16, 2243-2251 [31] http://en.wikipedia.org/wiki/SQUID, [32] http://en.wikipedia.org/wiki/Vibrating_Sample_Magnetometer, [33] http://en.wikipedia.org/wiki/Magnetic_force_microscopy, [34] Hsu, L. C., Li, Y. Y., Lo, C. G., Huang, C. W. and Chern, G., "Thermal growth and magnetic characterization of alpha-Fe2O3 nanowires", J. Phys. D-Appl. Phys., 2008, 41, [35] Kim, C. H., Chun, H. J., Kim, D. S., Kim, S. Y. and Park, J., "Magnetic anisotropy of vertically aligned ?Fe2O3 nanowire array", Appl. Phys. Lett., 2006, 89, 223103 [36] Xu, Y. Y., Rui, X. F., Fu, Y. Y. and Zhang, H., "Magnetic properties of ?Fe2O3 nanowires", Chem. Phys. Lett., 2005, 410, 36-38 [37] Kim, J. and Anderson, W. A., "Direct electrical measurement of the self-assembled nickel silicide nanowire", Nano Lett. , 2006, 6, 1356-1359 [38] Lee, J. S., Islam, M. S. and Kim, S., "Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method", Nano Lett., 2006, 6, 1487-1490 [39] Fan, Z. Y., Wen, X. G., Yang, S. H. and Lu, J. G., "Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors", Appl. Phys. Lett., 2005, 87, 013113 [40] Koo, S. M., Fujiwara, A., Han, J. P., Vogel, E. M., Richter, C. A. and Bonevich, J. E., "High inversion current in silicon nanowire field effect transistors", Nano Lett., 2004, 4, 2197-2201 [41] Schlenker, E., Bakin, A., Postels, B., Mofor, A. C., Wehmann, H. H., Weimann, T., Hinze, P. and Waag, A., "Electrical characterization of ZnO nanorods", Physica E, 2007, 244, 1473-1477 [42] Adeyeye, A. O. and White, R. L., "Magnetoresistance behavior of single castellated Ni80Fe20 nanowires", J. Appl. Phys., 2004, 95, 2025-2028 [43] Liu, I., Wu, Y. H., Long, H. H., Liu, Z. J., Zheng, Y. K. and Adeyeye, A. O., "Transport properties and micromagnetic modeling of magnetic nanowires with multiple constrictions", Thin Solid Films, 2006, 505, 35-40 [44] Lee, J. S., Islam, M. S. and Kim, S., "Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method", Nano Lett. , 2006, 6, 1487-1490 [45] Bhuvana, T. and Kulkarni, G. U., "Highly conducting patterned Pd nanowires by direct-write electron beam lithography", Acs Nano, 2008, 2, 457-462 [46] Juhasz, R., Elfstrom, N. and Linnros, J., "Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction", Nano Lett., 2005, 5, 275-280 [47] Takai, K. and Enoki, T., "Fabrication of graphitic nanowire structure by electron beam lithography", Physica E 2007, 40, 321-323 [48] Dieckmann, R., "Point-Defects and Transport in Hematite (Fe2o3-Epsilon)", Philos. Mag. A, 1993, 68, 725-745 [49] Lee, Y. C., Chueh, Y. L., Hsieh, C. H., Chang, M. T., Chou, L. J., Wang, Z. L., Lan, Y. W., Chen, C. D., Kurata, H. and Isoda, S., "p-Type alpha-Fe2O3 Nanowires and their n-Type Transition in a Reductive Ambient", Small, 2007, 3, 1356-1361 [50] Cesar, I., Kay, A., Martinez, J. A. G. and Gratzel, M., "Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping ", J. Am. Chem. Soc., 2006, 128, 4582-4583 [51] Chauhan, P., Annapoorni, S. and Trikha, S. K., "Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing", Thin Solid Films, 1999, 346, 266-268 [52] Frank, S. N. and Bard, A. J., "Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous-Solutions at Semiconductor Powders", J. Phys. Chem., 1977, 81, 1484-1488 [53] Ohmori, T., Takahashi, H., Mametsuka, H. and Suzuki, E., "Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent", Phys. Chem. Chem. Phys., 2000, 2, 3519-3522 [54] Beermann, N., vayssieres, L., Lindquist, S. E. and Hagfeldt, A., "Photoelectrochemical studies of oriented nanorod thin films of hematite", J. Electrochem. Soc., 2000, 147, 2456-2461 [55] http://en.wikipedia.org/wiki/Magnetoresistance, [56] Giuliani, G., "A general law for electromagnetic induction", EPL, 2008, 81, [57] Ohgai, T., Gravier, L., Hoffer, X., Lindeberg, M., Hjort, K., Spohr, R. and Ansermet, J. P., "Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios", J. Phys. D-Appl. Phys., 2003, 36, 3109-3114 [58] Ohgai, T., Enculescu, I., Zet, C., Westerberg, L., Hjort, K., Spohr, R. and Neumann, R., "Magneto-sensitive nickel nanowires fabricated by electrodeposition into multi- and single-ion track templates", J. Appl. Electrochem., 2006, 36, 1157-1162 [59] Seong, H. K., Kim, J. Y., Kim, J. J., Lee, S. C., Kim, S. R., Kim, U., Park, T. E. and Choi, H. J., "Room-Temperature Ferromagnetism in Cu Doped GaN Nanowires", Nano Lett., 2007, 7, 3366-3371 [60] Burgess, R. E., Kroemer, H. and Houston, J. M., "CORRECTED VALUES OF FOWLER-NORDHEIM FIELD EMISSION FUNCTIONS V(Y) AND S(Y)", Physical Review, 1953, 90, 515-515 [61] Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J. M. and Kern, K., "Scanning field emission from patterned carbon nanotube films", Appl. Phys. Lett., 2000, 76, 2071-2073 [62] Gao, H., Mu, C., Wang, F., Xu, D. S., Wu, K., Xie, Y. C., Liu, S., Wang, E. G., Xu, J. and Yu, D. P., "Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template", J. Appl. Phys., 2003, 93, 5602-5605 [63] Bonard, J. M., Croci, M., Arfaoui, I., Noury, O., Sarangi, D. and Chatelain, A., "Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?", Diam. Relat. Mat., 2002, 11, 763-768 [64] Jo, S. H., Lao, J. Y., Ren, Z. F., Farrer, R. A., Baldacchini, T. and Fourkas, J. T., "Field-emission studies on thin films of zinc oxide nanowires", Appl. Phys. Lett., 2003, 83, 4821-4823 [65] Zhu, Y. W., Yu, T., Cheong, F. C., Xui, X. J., Lim, C. T., Tan, V. B. C., Thong, J. T. L. and Sow, C. H., "Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films", Nanotechnology, 2005, 16, 88-92 [66] Zeng, B. Q., Xiong, G. Y., Chen, S., Wang, W. Z., Wang, D. Z. and Ren, Z. F., "Field emission of silicon nanowires grown on carbon cloth", Appl. Phys. Lett., 2007, 90, 033112-033112-033113 [67] Chen, P. L., Chang, J. K., Kuo, C. T. and Pan, F. M., "Field emission of carbon nanotubes on anodic aluminum oxide template with controlled tube density", Applied Physics Letters, 2005, 86, [68] Bonard, J. M., Weiss, N., Kind, H., Stockli, T., Forro, L., Kern, K. and Chatelain, A., "Tuning the field emission properties of patterned carbon nanotube films", Adv. Mater., 2001, 13, 184-188 [69] Yeon, S. C., Sung, W. Y., Kim, W. J., Lee, S. M., Lee, H. Y. and Kim, Y. H., "Field emission characteristics of CuO nanowires grown on brown-oxide-coated Cu films on Si substrates by conductive heating in air", J. Vac. Sci. Technol. B, 2006, 24, 940-944 [70] Zheng, Z., Chen, Y. Z., Shen, Z. X., Ma, J., Sow, C. H., Huang, W. and Yu, T., "Ultra-sharp alpha-Fe2O3 nanoflakes: growth mechanism and field-emission", Appl. Phys. A-Mater. Sci. Process., 2007, 89, 115-119 [71] Schon, G., "Quantum engineering - Superconducting nanowires", Nature, 2000, 404, 948-949 [72] Tans, S. J., Verschueren, A. R. M. and Dekker, C., "Room-temperature transistor based on a single carbon nanotube", Nature, 1998, 393, 49-52 [73] Martel, R., Schmidt, T., Shea, H. R., Hertel, T. and Avouris, P., "Single- and multi-wall carbon nanotube field-effect transistors", Appl. Phys. Lett., 1998, 73, 2447-2449 [74] Bae, H. S., Choi, C. M., Kim, J. H. and Im, S., "Dynamic and static photoresponse of ultraviolet-detecting thin-film transistors based on transparent NiOx electrodes and an n-ZnO channel", J APPL PHYS, 2005, 97, [75] Li, Q. H., Wan, Q., Liang, Y. X. and Wang, T. H., "Electronic transport through individual ZnO nanowires", Appl. Phys. Lett., 2004, 84, 4556-4558 [76] Zheng, X. G., Li, Q. S., Zhao, J. P., Chen, D., Zhao, B., Yang, Y. J. and Zhang, L. C., "Photoconductive ultraviolet detectors based on ZnO films", APPL SURF SCI, 2006, 253, 2264-2267 [77] Jie, J. S., Zhang, W. J., Jiang, Y., Meng, X. M., Li, Y. Q. and Lee, S. T., "Photoconductive characteristics of single-crystal CdS nanoribbons", Nano Lett., 2006, 6, 1887-1892 [78] Wang, D. S., Hao, C. H., Zheng, W., Peng, Q., Wang, T. H., Liao, Z. M., Yu, D. P. and Li, Y. D., "Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors", Adv. Mater. , 2008, 20, 2628-+ [79] Fu, X. Q., Wang, C., Feng, P. and Wang, T. H., "Anomalous photoconductivity of CeO2 nanowires in air", Appl. Phys. Lett., 2007, 91, [80] Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y., Lo, Y. H. and Wang, D., "ZnO nanowire UV photodetectors with high internal gain", Nano Lett., 2007, 7, 1003-1009 [81] Law, J. B. K. and Thong, J. T. L., "Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time", Appl. Phys. Lett., 2006, 88, [82] Lee, J. S., Islam, M. S. and Kim, S., "Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method", Sens. Actuator B-Chem., 2007, 73-77 [83] Hsieh, C. H., Chou, L. J., Lin, G. R., Bando, Y. and Golberg, D., "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires", Nano Lett., 2008, 8, 3081-3085 [84] Wu, C. Z., Yin, P., Zhu, X., OuYang, C. Z. and Xie, Y., "Synthesis of hematite (alpha-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors", J. Phys. Chem. B, 2006, 110, 17806-17812 [85] Hansen, M. F., Koch, C. B. and Morup, S., "Magnetic dynamics of weakly and strongly interacting hematite nanoparticles", Phys. Rev. B, 2000, 62, 1124-1135 [86] Chen, J., Xu, L. N., Li, W. Y. and Gou, X. L., "alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications", Adv. Mater., 2005, 17, 582-586 [87] Sun, Z. Y., Yuan, H. Q., Liu, Z. M., Han, B. X. and Zhang, X. R., "A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates", Adv. Mater., 2005, 17, 2993-2997 [88] Woo, K., Lee, H. J., Ahn, J. P. and Park, Y. S., "Sol-gel mediated synthesis of Fe2O3 nanorods", Adv. Mater., 2003, 15, 1761-1764 [89] Lillehei, P. T., Park, C., Rouse, J. H. and Siochi, E. J., "Imaging carbon nanotubes in high performance polymer composites via magnetic force microscopy", Nano Lett., 2002, 2, 827-829 [90] Sorop, T. G., Untiedt, C., Luis, F., Kroll, M., Rasa, M. and de Jongh, L. J., "Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy", Phys. Rev. B, 2003, 67, 014402 [91] Ebels, U., Radulescu, A., Henry, Y., Piraux, L. and Ounadjela, K., "Spin accumulation and domain wall magnetoresistance in 35 nm Co wires", Phys. Rev. Lett., 2000, 84, 983-986 [92] Tsoi, M., Fontana, R. E. and Parkin, S. S. P., "Magnetic domain wall motion triggered by an electric current", Appl. Phys. Lett., 2003, 83, 2617-2619 [93] Radulescu, A., Ebels, U., Henry, Y., Ounadjela, K., Duvail, J. L. and Piraux, L., "Magnetoresistance of a single domain wall in Co and Ni nanowires", IEEE Trans. Magn., 2000, 36, 3062-3064 [94] Vila, L., George, J. M., Faini, G., Popa, A., Ebels, U., Ounadjela, K. and Piraux, L., "Transport and magnetic properties of isolated cobalt nanowires", IEEE Trans. Magn., 2002, 38, 2577-2579 [95] Hernandez-Ramirez, F., Tarancon, A., Casals, O., Pellicer, E., Rodriguez, J., Romano-Rodriguez, A., Morante, J. R., Barth, S. and Mathur, S., "Electrical properties of individual tin oxide nanowires contacted to platinum electrodes", Phys. Rev. B, 2007, 76, 085429-085433 [96] Seong, H. K., Kim, J. Y., Kim, J. J., Lee, S. C., Kim, S. R., Kim, U., Park, T. E. and Choi, H. J., "Room-temperature ferromagnetism in cu doped GaN nanomores", Nano Lett., 2007, 7, 3366-3371 [97] Nebeschutz, M., Cimalla, V., Ambacher, O., Machleidt, T., Ristic, J. and Calleja, E., "Electrical performance of gallium nitride nanocolumns", Physica E, 2007, 37, 200-203 [98] Hsu, L.-C., Li, Y.-Y., Lo, C. G., Huang, C. W. and Chern, G., "Thermal growth and magnetic characterization of the ?Fe2O3 nanowires", J. Phys. D-Appl. Phys., 2008, [99] Takagi, R., J. Phys. Soc. Jpn., 1957, 12, 1212-1218 [100] Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Cho, K. J. and Dai, H. J., "Nanotube molecular wires as chemical sensors", Science, 2000, 287, 622-625 [101] Kelzenberg, M. D., Turner-Evans, D. B., Kayes, B. M., Filler, M. A., Putnam, M. C., Lewis, N. S. and Atwater, H. A., "Photovoltaic measurements in single-nanowire silicon solar cells", Nano Lett., 2008, 8, 710-714 [102] Hsu, L.-C., Li, Y.-Y. and Hsiao, C.-Y., "Synthesis, electrical measurement and field emission property of ?Fe2O3 nanowires", Nanoscale Res. Lett., 2008, [103] Huang, Y., Duan, X. F. and Lieber, C. M., "Nanowires for integrated multicolor nanophotonics", Small, 2005, 1, 142-147 [104] Law, M., Kind, H., Messer, B., Kim, F. and Yang, P. D., "Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature", Angew. Chem.-Int. Edit., 2002, 41, 2405-2408 [105] Hayden, O., Agarwal, R. and Lieber, C. M., "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection", Nat. Mater., 2006, 5, 352-356 [106] Millo, O., Katz, D., Steiner, D., Rothenberg, E., Mokari, T., Kazes, M. and Banin, U., "Charging and quantum size eiiects in tunnelling and optical spectroscopy of CdSe nanorods", Nanotechnology, 2004, 15, R1-R6 [107] Chen, R. S., Chen, H. Y., Lu, C. Y., Chen, K. H., Chen, C. P., Chen, L. C. and Yang, Y. J., "Ultrahigh photocurrent gain in m-axial GaN nanowires", Appl. Phys. Lett., 2007, 91, [108] Razeghi, M. and Rogalski, A., "Semiconductor ultraviolet detectors", J. Appl. Phys. , 1996, 79, 7433-7473 [109] Kind, H., Yan, H. Q., Messer, B., Law, M. and Yang, P. D., "Nanowire ultraviolet photodetectors and optical switches", Adv. Mater., 2002, 14, 158-160
|