跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊德
研究生(外文):Jun-de Li
論文名稱:具交聯結構之聚苯乙烯-聚甲基丙烯酸甲酯核殼式膠體粒子之合成與分析
論文名稱(外文):Synthesis and analysis of cross-linked polystyrene / polymethyl methacrylate core-shell colloidal particles
指導教授:華繼中
指導教授(外文):Chi Chung Hua
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:核殼式膠體粒子
外文關鍵詞:core-shell particles
相關次數:
  • 被引用被引用:2
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以種子乳液合成法來合成具交聯結構之聚苯乙烯-聚甲基丙烯酸甲酯 (PS-PMMA) 核殼式膠體粒子,並利用掃描式電子顯微鏡(SEM) 、穿透式電子顯微鏡 (TEM) 以及雷射粒徑測定儀 (Zeta Sizer) 來探測粒子殼層的厚度以及粒子粒徑分布情況。由於未來欲利用光散射系統來觀察粒子在高剪切力環境下的粒子運動狀態,所以我們將核殼式粒子溶於高黏度的溶劑-鄰苯二甲酸二乙酯 (DEP) 及其他不同的有機溶劑中,觀察粒子在不同溶劑中的粒子分散情況及粒徑變化狀況,發現核殼式膠體粒子在DEP中,粒子沒有溶脹的情形發生,推測可能是粒子二次交聯關係所致。另外粒子的溶解量明顯變少,經由雷射粒徑測定儀來量測粒子的表面電位,發現核殼式膠體粒子的表面電位較核心粒子小,推測原因可能為核心粒子的表面電荷,因包覆上殼層使原先的電雙層厚度被遮蔽,所以使粒子表面的電荷因此減少,因而降低粒子的分散性。
We describe the preparation and characterizations of cross-linked core-shell colloidal particles made of a polystyrene core and a poly (methyl methacrylate) shell. The core-shell particles were prepared by seeded soapless emulsion polymerization, and were characterized by transmission electron microscope (TEM), scanning electron microscope (SEM) and dynamic light scattering (DLS). To investigate rheo-optical properities of the particles in the future, we dispersed the particles in a high-viscosity solvent (Diethyl phthalate ; DEP) and other organic solvents. Swelling of the particles in DEP was not observed, suggesting that the crosslinking density of the particles was high and thus the dispersion capability was low. One possible cause of this phenomena was that the surface charge of the core has been screened by the shell material.
誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 序論 1
第二章 簡介與文獻回顧 3
2-1膠體粒子介紹 3
2-2 無乳化劑乳化聚合法介紹 4
2-3 乳化聚合與無乳化劑乳化聚合之比較 4
2-4 影響無乳化劑乳化聚合反應的變因 5
2-4-1 起始劑的影響 5
2-4-2 單體極性的影響 6
2-4-3 親水性共單體的影響 6
2-4-4離子強度的影響 7
2-4-5溫度的影響 7
2-4-6氮氣純度的影響 8
2-4-7 pH值的影響 8
2-4-8溶劑極性的影響 8
2-5無乳化劑乳化聚合反應的成核機制 9
2-6核殼式膠體粒子原理與應用 10
2-6-1有機核心粒子 11
2-6-2無機核心粒子 11
2-6-3中空粒子 12
2-7 PMMA-PS核殼式膠體粒子之合成探討 14
2-7-1 PMMA-PS核殼式膠體粒子成核機制探討 19
第三章 實驗裝置與實驗方法 21
3-1實驗藥品 21
3-2實驗儀器 25
3-3實驗裝置 26
3-4實驗方法與步驟 26
3-4-1聚苯乙烯膠體粒子的製備步驟 26
3-4-2聚甲基丙烯酸甲酯膠體粒子的製備步驟 27
3-4-3聚苯乙烯-聚甲基丙烯酸甲酯/核殼式膠體粒子的製備步驟 27
3-4-4具交聯結構之聚苯乙烯膠體粒子合成及離心步驟 28
3-4-5聚甲基丙烯酸甲酯膠體粒子合成及離心步驟 28
3-4-6具交聯結構之PS-PMMA核殼式膠體粒子合成及離心步驟 28
3-5 膠體粒子粒徑的量測 29
3-6 膠體乳液的烘乾製備 30
3-7 膠體粒子溶於不同溶劑中之實驗配置 30
第四章 結果與討論 31
4-1 PS膠體粒子合成 31
4-2 PMMA膠體粒子合成 34
4-3 PS與PMMA膠體粒子之特性與結構差異 35
4-4 核殼式膠體粒子合成 38
4-4-1 PS-PMMA核殼式膠體粒子合成 39
4-4-2 PMMA-PS核殼式膠體粒子合成 42
4-5具交聯結構之膠體粒子合成 45
4-5-1具交聯結構之PS膠體粒子合成 46
4-5-2具交聯結構之聚苯乙烯膠體粒子在DEP中之溶解情況 47
4-5-3具交聯結構之PMMA膠體粒子合成 50
4-5-4具交聯結構之PMMA膠體粒子在DEP中之溶解情況 52
4-6具交聯結構之膠體粒子溶於不同有機溶劑之分散情形比較 54
4-6-1有機溶劑的極性比較 54
4-6-2具交聯結構之PS膠體粒子溶於不同有機溶劑之分散情形比較 56
4-6-3具交聯結構之PMMA膠體粒子溶於不同有機溶劑之分散情形比較 58
4-7具交聯結構之核殼式膠體粒子合成 60
4-7-1具交聯結構之PMMA-PS核殼式膠體粒子合成 60
4-7-2具交聯結構之PS-PMMA核殼式膠體粒子合成 63
4-7-3具交聯結構之核殼式膠體粒子在不同溶劑中之分散情形比較 65
第五章 結論 71
參考文獻 73
謝如嘉,巨螯合官能基單體與苯乙烯之無乳化劑乳化共聚合的反應動力探討,碩士論文,成功大學,民國八十九年

歐進祿,均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子,博士論文,中央大學,民國九十年

李佩縈,苯乙烯及甲基丙烯酸的無乳化劑乳化共聚合研究,碩士論文,文化大學,民國九十一年

郭政雨,膠體粒子系統於光子晶體、光催化與染料敏化太陽能電池之應用,博士論文,清華大學,民國九十六年

Alex van Herk, “Chemistry and technology of emulsion polymerization,” Willey-Black Well Chapter 3 (2005).

Arshady R., “Microspheres for biomedical applications: preparation of reactive and labelled microspheres,” Biomaterials 14, 5-15 (1993).

Akira, M., Hiroaki OE and Hiroyuki AOTA, “Degradation of ultrahigh molecular weight poly(styrene-co-m-divinylbenzene)s as network-polymer precursors in SEC columns,”
J. Polymer 34, 242-245 (200).

Berry, G. C., “Thermodynamics and conformational properties of polystyrene. Intinsic viscosity studies on dilute solutions of linear of linear polystyrene,” J. Chem. Phys. 46, 1338 (1967).

Balakrishnan T. and E. Murugan, “Synthesis and spectral characterization of surface-enriched polymer-supported phase transfer catalysts and their effects on alkylation of phenylacetone,” J. Applied Polymer Sci. 76, 408-418 (2000).

Chang, S., and S. Chen, “Kinetics and mechanism of emulsifier-free emulsion polymerization. II. Styrene/water soluble comonomer (sodium methallyl sulfonate) system,” J. Polymer Sci. 26, 1207-1299 (1988).


Cho, I., and K.W. Lee, “Morphology of latex particles formed by Poly(methyl Methacrylate)-Seeded emulsion polymerization of styrene,” J. Applied Polymer Sci. 30, 1903-1926 (1985).

Cho, S. H., W. Y. Kim, G. K. Jeong, and Y. S. Lee, “Synthesis of nano-sized polypyrole-coated polystyrene latexes,” J. Colloids and Surface 255, 79-83 (2005)

Frith W. J., T. A. Strivens, and W. B. Russel, “The rheology of suspensions containing polymerically stabilized particles,” J. Colloid Interface Sci. 139, 55 (1990).

Ha, J. W., I. J. Park, S.B.Lee, and D.K.Kim, “Preparation and characterization of core-shell particles containing perfluoroalkyl acrylate in the shell,” Marmolecules 35, 6511-6818 (2002).

Hugo, F. Hernandez., Klaus Tauer, “Brownian dynamics simulation studies on radical capture in emulsion polymerization,” Macromol. Symp., 259, 274-283 (2007).

Jung, M., I. Ouden, A. Motntoya-Goni, D. H. W. Hubert, P. M. Frederik, V. Herk, A. L. German, “Polymerization in polymerizable vesicle bilayer membranes,” Langmuir 16, 4185-4195 (2000).

Jonsson, J. E., H. Hassander, and B. Tornell, “Polymerization conditions and the development of a core-shell morphology in PMMA/PS latex particles. 1. Influence of initiator properties and mode of monomer addition,” Macromolecules 27, 1932 (1994).

Jones, D. A. R., B. Leary, and D. V. Boger, “The rheology of a concentrated colloidal suspension of hard spheres,” J. Colloid Interface Sci. 147, 479 (1991).

Lee, J., Hong C. K., Choe S., and Shim S. E., “Synthesis of polystyrene/silica composite particles by soap free emulsion polymerization using changed colloidal silica,” J. Colloid and Interface Science 310, 112-120 (2007).

Lewis, J. A., “Colloidal Processing of Ceramics,” J. Am. Ceram. Soc. 83, 2341-59 (2000).

Lee, C. F., W. Y. Chiu, “Kinetic study on the poly (methyl methacrylate) seeded soapless emulsion polymerization of styrene. I. Experimental Investigation,” J. Applied Polymer Sci. 56, 1263-1274 (1995).


Meitz, D. W., L. Yen, G. C. Berry, H. Markovitz, “Rheological studies of dispersions of spherical particles in a polymer solution,” J. Rheology 32, 309-351 (1988).

Nelliappan, V., M. S. El-aaser, A. Klein, E. S. Daniels, J. E. Roberts, R. A. Pearson, “Effect of the core / shell latex particle interphase on the mechanical behavior of rubber-toughened poly (methyl methacrylate),” J. Applied Polymer Sci. 65, 581-593 (1997).

Okubo, M., A. Yamada, and T. Matsumoto, “Estimation of Morphology of composite polymer emulsion particles by the soap titration method,” J. Polymer Sci. 16, 3219-3228 (1980).

Okubo, M., and K. Ichikawa, “Prediction of multihollow polymer particles by the stepwise alkali/acid method IV. Acid treatment process,” Colloid Polymer Sci. 292, 933-937 (1994).

Okubo, M., and T. Nakagawa, “Preparation of micron-size monodisperse polymer particles having highly crosslinked structures and vinyl groups by seed polymerization of divinylbenzene using the dynamic swelling method,” Colloid Polymer Sci. 270, 853-858 (1992).

Okubo, M., and T. Nakagawa, “Formation of multihollow structures in crosslinked composite polymer particles,” Colloid Polymer Sci. 272, 530-535 (1994).

Ou, J. L., J. K. Yang, and H. Chen, “Styrene/potassium persulfate/water systems: effects of hydrophilic comonomers and solvent additives on the nucleation mechanism and the particle size,” European Polymer Journal 37, 789-799 (2001).

Paleos, N., “Polymerization of monomeric to polymeric vesicles. Characterization and applications,” Polymer reviews. 30, 379-404 (1990).

Paxton, T. R., “Adsorption of emulsifier on polystyrene and (polymethacrylate) latex particles,” J. Colloid Interface Sci. (1969).

Sacanna, S., and L. Rossi, “Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies,” Langmuir 22, 1822-1827 (2006).

Templeton-knight, “Encapsulation of inorganic particles by emulsion polymerization,” Chemistry and Industry (London) 16, 512-515 (1990).

Tantishaiyakul, V., N. Worakul, and W. Wongpoowarak, “Prediction of solubility parameters using partial least square regression,” J. Pharmaceutics 325,8-14 (2006).

Vandezande, GA., and A. Rudin, “Novel composite latex particles for use in coatings,” J. Coatings technology 66, 99-108 (1994).

Wang, G.J., C.S. Kang, and R.G. Jin, “Synthesis of acrylic core-shell composite polymers and properties of plastisol-gels,” Progress in Organic Coatings 50, 55-61 (2004).

Winnik M. A. and C. L. Zhao, “Electron microscopy studies of polystyrene-poly(methyl- methacrylate) core-shell latex particles,” Langmuir 9, 2053-2065 (1993).

Yeliseyeva, V. I., “Emulsion polymerization”, Chap. 7, Academic Press, (1982).

Yamamoto, T., M. Nakayama, Y. Kanda, and Ko Higashitani, “Growth mechanism of soap-free polymerization of styrene investigated by AFM,” J. Colloid and Interface Sci. 297, 112-121 (2006).

Zhang, S., and W. Ray, “Modeling and experimental studies of aqueous suspension polymerization processes. 3. Mass-transfer and monomer solubility effects,” American Chemical Society 36, 1310-1321 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊