跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施侑伸
研究生(外文):Yu-shen Shih
論文名稱:金奈米粒子自組裝於不同材質的基材上以及其感測距離的探討
論文名稱(外文):Localized Plasmon Resonance Sensors: Self-Assembly of Gold Nanoparticles on Substrate and Sensing Depth
指導教授:周禮君周禮君引用關係
指導教授(外文):Lai-kwan Chau
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:76
中文關鍵詞:定域化表面電漿共振金奈米粒子感測距離
外文關鍵詞:Sensing DepthLocalized Plasmon ResonanceGold Nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
金奈米粒子存在一獨特的定域化電漿共振光譜 (Localized Plasmon Resonance, LPR),其光譜會隨著介質環境折射率的變化而隨之改變。本論文將棒狀和圓球形金奈米粒子自組裝於玻璃基材上,並探討其不同形狀大小粒子的感測距離 (sensing depth) 與感測的能力。在此,感測距離可定義為: 在金奈米粒子表面多遠的距離,還能感測到折射率變化並造成其最大吸收波長的偏移或波峰最大吸收度的變化。而測量感測距離的方法,是以聚合物堆疊在金奈米粒子表面的層數來計算,平均一層聚合物的厚度為 4 nm。
在金奈米棒的部份,我們嘗試延長金奈米棒的感測距離,目的是為了在感測微生物體時,例如細菌,能提升其感測靈敏度。對R值∼ 2的金奈米棒,感測距離大約為56 nm;對R值∼ 4的金奈米棒,感測距離大約為64 nm。此外,藉著在金奈米棒表面塗佈 TiO2,將金奈米棒的感測距離延長,對R值∼ 2的金奈米棒,感測距離延伸至72 nm;對R值∼ 4的金奈米棒,感測距離延伸至80 nm。另外,我們也建立以金奈米棒為元件的感測系統,藉著在金奈米棒表面修飾N-2,4-dinitrophenyl-ε-amino-n-caproic acid (DNP),對不同濃度的anti-dinitrophenyl antibody (anti-DNP)進行感測,得到一偵測極限為
45 pM。
根據文獻報導,直徑越小的圓球形金奈米粒子,其感測距離會越小,在此我們以直徑小於10 nm的粒子為研究對象,目的是想要探討越短的感測距離,對小分子的偵測是否會更靈敏。在此,將5 nm 和24 nm的圓球形金奈米粒子自組裝於玻璃並進行感測距離的測量,得到的感測距離分別為約20 nm 和24 nm。而在感測小分子的實驗中,將圓球形金奈米粒子的表面修飾上mercaptoundecanic acid,對10-6 M的aminofluorescein (分子量347)、 4,7,10-trioxa-1,13-tridecanediamine (分子量220) 和dodecylamine (分子量185) 進行感測,發現當分析物為4,7,10-trioxa-1,13-tridecanediamine和 aminofluorescein時,直徑5 nm和24 nm的圓球形金奈米粒子,其光譜都有明顯的變化。然而當分析物為dodecylamine 時,直徑5 nm的圓球形金奈米粒子,其光譜有明顯的變化,而24 nm的粒子並無變化。此結果初步顯示,直徑較小的圓球形金奈米粒子對小分子有較佳的感測能力。
Gold nanoparticles exhibit a localized plasmon resonance (LPR) band in the visible to near-infrared region, a phenomenon caused by the collective oscillations of conduction electrons induced by electromagnetic wave. The frequencies and intensities of the plasmon band are sensitive to the refractive index of the surrounding medium of the nanoparticles. In this study, we focued on gold nanorods and gold nanospheres and investigated their sensing depths. Sensing depth is defined as the distance from the surface of gold nanoparticles within which a change in refractive index causes a shift in peak wavelength or a change in peak absorbance of the LPR band.
In the first part of this study, we tried to extend the sensing depth of gold nanorods in order to improve the sensitivity in detection of microscopic organisms, such as bacteria and virus. For nanorods with aspect ratio ∼ 2, the sensing depth was about 56 nm, and nanorods with aspect ratio ∼ 4, the sensing depth was about 64 nm. Furthermore, we tried to enlarge the sensing depth by coating TiO2 on the surface of nanorods with aspect ratio ∼ 2; the depth was extended to 72 nm, indicating that nanorods can detect a refractive index change up to 72 nm away from the nanorod’s surface. Also, sensing depth of nanorods with aspect ratio ∼ 4 was extended to 80 nm by coating TiO2. In one example, the biosensing capability of gold nanorods is demonstrated by conjugation of N-2,4-dinitrophenyl-ε-amino-n-caproic acid (DNP) to the nanorod surface via cystamine as a linker. Anti-dinitrophenyl antibody (Anti-DNP) binding to DNP-functionalized gold nanorods was monitored by the wavelength shift of the LPR peak. This shift is due to the change in local refractive index at gold nanorod surface induced by anti-DNP binding to DNP. The limit of detection of the sensor for anti-DNP is 45 pM.
In the second part of this study, we tried to shorten the sensing depth in order to explore the feasibility of using small gold nanoparticles for detection of small molecules. Here, spherical gold nanoparticles of ∼5 and 24 nm were synthesized and then immobilized on glass substrates. The nanoparticles were than modified with mercaptoundecanic acid (MUA) to detect the adsorption of positively charged amine compounds: aminofluorescein (M.W.=347)、4,7,10-trioxa-1,13-tridecanediamine (M.W.=220) and dodecylamine (M.W.=185), on the surface of MUA-modified gold nanoparticles. Results show that 4,7,10-trioxa-1,13-tridecanediamine and aminofluorescein can be detected by both spherical gold nanoparticles of ∼5 and 24 nm, but dodecylamine can only be detected by spherical gold nanoparticles of ∼5 nm. From these results, we demonstrate that smaller spherical gold nanoparticles have a better sensitivity toward detection of small molecule.
總目錄.....................................................................................................I
圖表目錄.............................................................................................VI
中文摘要.............................................................................................XI
英文摘要..........................................................................................XIII
第一章 緒論
1-1 定域化電漿共振(Localized Plasmon Resonance,LPR) ...............................................................................................1
1-2 金屬奈米粒子的 LPR 波帶....................................................2
1-3 金奈米粒子......................................................................................6
1-4 自我組裝單層(Self-Assembled Monolayer, SAMs) .................. 9
1-5 感測距離 (Sensing depth)..................................................11

第二章 探討金奈米棒的感測距離並嘗試延伸之
1 前言....................................................................................................12
2 實驗部分...........................................................................................13
2-1 藥品及儀器設備.....................................................................13
2-1-1 儀器.......................................................................................13
2-1-2 藥品.......................................................................................14
2-2金奈米棒的合成方法............................................................16
2-2-1 製備晶種溶液......................................................................16
2-2-1-1配製溶液..........................................................................16
2-2-1-2實驗方法.........................................................................16
2-2-2合成最大吸收波長< 850 nm的金奈米棒............................16
2-2-2-1溶液的配製.....................................................................16
2-2-2-2實驗方法.........................................................................17
2-2-3合成最大吸收波長>850 nm的金奈米棒..............................17
2-2-3-1溶液的配製......................................................................17
2-2-3-2實驗方法..........................................................................17
2-3在玻璃片表面自組裝金奈米棒(GlassAurod)..................18
2-3-1溶液的配置.............................................................................18
2-3-2玻璃表面修飾方法.................................................................18
2-4在PMMA表面修飾金奈米棒(PMMAAurod).......19
2-4-1溶液的配製.............................................................................19
2-4-2實驗步驟.................................................................................19
2-5 GlassAurod在不同折射率的糖水溶液下的偵測...........20
2-5-1溶液的配置.............................................................................20
2-5-2實驗方法.................................................................................20
2-6在金奈米棒表面修飾DNP...................................................21
2-6-1溶液的配置.............................................................................21
2-6-2實驗步驟.................................................................................21
2-7 GlassAurod表面進行layer-by layer-deposition......21
2-7-1溶液的配置.............................................................................22
2-7-2實驗步驟.................................................................................22
2-8 GlassAurod表面修飾TiO2 (GlassAurod-TiO2).......23
2-8-1溶液的配置.............................................................................23
2-8-2實驗步驟.................................................................................23
3 結果與討論......................................................................................24
3-1金奈米棒溶液的合成.............................................................24
3-2金奈米棒固定化於玻璃基材上的探討.............................27
3-2-1溶液離子強度的影響.............................................................31
3-2-2介面活性劑(surfactant)的濃度...............................................33
3-2-3金奈米棒的濃度.....................................................................34
3-2-4金奈米棒(最大吸收波長>850 nm)的自組裝........................34
3-3探討CTAB是否存在於GlassAurod表面...........................36
3-4探討GlassAurod對外在環境折射率變化的靈敏度.......38
3-5探討金奈米棒對生化分子的感測能..................................40
3-6金奈米棒自組裝於PMMA上的探討與生化感測上的應 用...........................................................................................................44
3-7探討金奈米棒的感測距離 (Sensing depth).....................48


第三章 探討粒徑<10nm的圓球形金奈米粒子對小分子的感測能力
1 前言....................................................................................................52
2 實驗部分...........................................................................................53
2-1 儀器與藥品..............................................................................53
2-1-1 儀器.......................................................................................53
2-1-2 藥品.......................................................................................54
2-2合成直徑約5 nm的圓球形金奈米粒子.................55
2-2-1 配置溶液...............................................................................55
2-2-2 實驗步驟…...........................................................................55
2-3合成直徑約20 nm的圓球形金奈米粒子........................56
2-3-1配置溶液................................................................................56
2-3-2實驗方法................................................................................56
2-4在玻璃片表面自組裝圓球形金奈米粒子(GlassAu)....57
2-4-1 溶液的配製...........................................................................57
2-4-2 玻璃表面修飾方法...............................................................57
2-5 GlassAu在不同折射率的糖水溶液下的偵測...............58
2-5-1配置溶液................................................................................58
2-5-2實驗方法................................................................................58
2-6在GlassAu表面進行layer-by-layer deposition…59
2-6-1溶液的配製............................................................................59
2-6-2實驗步驟................................................................................59
2-7在GlassAu修飾MUA,對具有amine group的小分子做偵測............................................................................................60
2-7-1溶液的配製...........................................................................60
2-7-2實驗方法...............................................................................61
3 結果與討論.....................................................................................62
3-1水相圓球形金奈米粒子的合成與固定化於玻璃基材
............................................................................................................62
3-2探討GlassAu對外在環境折射率變化的靈敏度........66
3-3探討圓球形金奈米粒子的感測距離................................68
3-4圓球形金奈米粒子表面修飾MUA對不同分子量的小 分子感測.........................................................................................70
第四章 結論....................................................................................74
參考文獻............................................................................................75
1.張仕欣, 王崇人, 化學, 1998, 56, 209-222
2.Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073-3077
3.Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685-1706
4.Nath, N.; Chilkoti, A. Anal. Chem. 2004, 76, 5370-5378
5.Miller, M. M.; Lazarides, A. A. J. Phys. Chem. B 2005, 109, 21556-21565
6.Mulvaney, P. Langmuir, 1996, 12, 788-800
7.吳民耀, 劉威志 物理雙月刊, 2006, 28, 486-496
8.Creighton, J. A.; Eadon, D. G. J. Chem. Soc. Faraday. Trans. 1991,
87, 3881.
9.Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem . Rev. 2005, 249,1870-1901
10.Gans, R. Ann. Physik 1915, 47, 270
11.Papavassiliou, G. C. Prog. Solid. State Chem. 1980, 12, 185
12.Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15,1957-1962
13.Frens, G.; Nature 1973, 241, 20
14.Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G.. M. Chem. Rev. 2005, 105(4), 1103-1170.
15.Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B 2005, 109, 22192 -22200.
16. Nikoobakht, B.; El-Sayed, M. A. Langmuir 2001, 17, 6368-6374
17. 謝嘉育, 中正大學化學研究所碩士論文, 2003.
18. Haes, A. J. ; Zou, S.; Schatz, C. G.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 109-116
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top