跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/15 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧伊雯
研究生(外文):I-Wen Teng
論文名稱:抑癌基因HIC1與RASSF1A去氧核醣核酸甲基化修飾足以使正常骨髓間質幹細胞轉型為癌細胞
論文名稱(外文):Targeted HIC1 and RASSF1A Methylation Is Sufficient to Transform a Mesenchymal Stem Cell
指導教授:蕭淑惠蕭淑惠引用關係
指導教授(外文):Shu-Huei Hsiao
學位類別:碩士
校院名稱:國立中正大學
系所名稱:生命科學系暨分子生物研究所暨生物醫學研究
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:去氧核糖核酸甲基化抑癌基因HIC1RASSF1A骨髓間質幹細胞
外文關鍵詞:tumor suppressor gene HIC1 and RASSF1ADNA methylationMesenchymal Stem Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
經由過去的研究指出,癌化的過程中常伴隨著對位性基因體的修飾,例如在不同的癌症中,HIC1與RASSF1A,二個調控細胞週期(cell cycle)與細胞計畫性凋亡機制(apoptosis)之抑癌基因,會經由去氧核醣核酸甲基化修飾使其失去作用。但是目前還沒有任何研究發現,是否對位性基因體修飾就足以使細胞癌化。在我們的實驗中使用了量身訂作甲基化技術,將骨髓間質幹細胞中HIC1與RASSF1A共同甲基化,另一方面也將調控生長發育的Salvador-Warts-Hippo (SWH)訊息傳遞路徑中十個基因共同甲基化,觀察是否透過去氧核醣核酸甲基化修飾作用就足以使正常骨髓間質幹細胞癌化,並正向的去證實癌症幹細胞理論。實驗結果顯示,在骨髓間質幹細胞內將HIC1與RASSF1A共同甲基化(me_H&R)或將SWH訊息傳遞路徑中十個基因共同甲基化(me_SWH)會導致細胞失去接觸抑制作用。除此之外,me_H&R與me_SWH細胞株亦具有許多轉型細胞的特性,包含了me_H&R與me_SWH細胞比起對照組骨髓間質幹細胞具有較高的增生速率,並可於軟性瓊脂培養基(soft agar)內形成許多細胞群落。而轉型的me_H&R與me_SWH細胞依然具有幹細胞之特性,因其表達CD133表面抗原並能夠分化為神經細胞。而me-H&R細胞株更可在免疫缺乏之裸鼠體內形成腫瘤。綜合以上結果得知,利用量身訂作甲基化技術將抑癌基因HIC1與RASSF1A在骨髓間質幹細胞內高度甲基化,會使得骨髓間質幹細胞轉型為具有癌化性質的細胞,並且此細胞依然具有幹細胞之特性。在本實驗中我們證實了,去氧核醣核酸甲基化修飾足以使正常成體幹細胞轉型為癌細胞。
To evaluate if the epigenomic modifications are sufficient to transform stem cells and test the tumor stem cell hypothesis, we methylated the HIC1 and RassF1A (H&R) loci together or ten loci from the Salvador-Warts-Hippo (SWH) pathway in the senescent human mesenchymal stem cells (MSCs) to observe if the MSCs would be transformed. The SWH pathway is initially identified in the Drosophila model that loss of function of genes within this pathway accelerates tumorigenesis. Both HIC1 and RassF1A are tumor suppressor genes and are frequently silenced by DNA methylation in many types of cancer, thus, the knock-down of HIC1 and RassF1A is aimed to recapitulate the generally believed oncogenic processes. We found that transfection of in vitro methylated SWH or HIC1&RASSF1A into human MSCs did not alter the stemness of human MSCs, as stem cell markers like CD133 and Oct4 remained and these transfected MSCs can be induced to differentiate. However, the treated cells also exhibit several characteristics of tumor cells, including higher proliferation rates, greater colony formation capability, greater metastatic ability in trans-well studies and tumoral formation ability in nude mice. Taken together, these data indicate that human MSCs can be transformed by in vitro methylated HIC1 and RassF1A. Because the derived cells possess both the stem and tumoral properties, we would like to suggest that DNA methylation is sufficient to transform a somatic stem cell.
致謝……………………………………………………………………Ⅰ
中文摘要………………………………………………………………Ⅱ
英文摘要………………………………………………………………Ⅲ
目錄………………………………………………………………....Ⅳ
圖表目錄………………………………………………………………Ⅵ
附圖目錄………………………………………………………………Ⅷ
第一章 緒論
第一節 癌症對位性基因體學…………………………………………1
第二節 去氧核醣核酸甲基化(DNA methylation)………………….3
第三節 抑癌基因Hypermethylation In Cancer 1 (HIC1)概述….5
第四節 抑癌基因RASSF1A概述……………………………………….6
第五節 Salvador-Warts-Hippo (SWH)訊息傳遞路徑………………6
第六節 實驗目的………………………………………………………7
第二章 材料與方法
第一節 細胞培養………………………………………………………8
第二節 於骨髓間質幹細胞中將其抑癌基因HIC1、RASSF1A甲基化.8
第三節 基因選殖………………………………………………………9
第四節 活體外去氧核醣核酸甲基化 (In vitro DNA methylation)……10
第五節 甲基化去氧核醣核酸片段轉染(transfection)………….10
第六節 亞硫酸鹽轉化法 (bisulfite conversion)………………11
第七節 即時定量甲基化特異性聚合酶連鎖反應分析…………….11
第八節 免疫螢光染色分析………………………………………….12
第九節 軟瓊脂群落形成實驗 (soft agar colony formation assay)…13
第十節 細胞生長速度之檢測……………………………………….14

第十一節 誘導神經分化…………………………………………….14
第十二節Differential Methylation Hybridization (DMH) array………15
第十三節 DNA甲基化抑制劑(5-aza-2’-deoxycitydine)處理….17
第十四節 免疫組織螢光染色 (Tissue Immunostaining)……….17
第十五節 免疫組織化學染色 (Immunohistochemistry)…………18
第十六節 流式細胞儀(flow cytometry)分析…………………….19
第三章 實驗結果
第一節 抑癌基因HIC1、RASSF1A量身定做甲基化…………………20
第二節 me_H&R細胞株中有特定基因甲基化改變………………….22
第三節me_H&R與me_SWH細胞株仍具有幹細胞性質…………………24
第四節 me_H& R與me_SWH細胞株具有癌細胞之性質………………25
第五節 由me_H&R細胞株生成之腫瘤中有間質細胞(mesenchymal cells)轉型為上皮細胞的現象……………………………………..29
第六節 經由Xenograft會增加帶有CD133表面抗原細胞的比例….30
第七節 me_H&R細胞株具有較高的抗藥性………………………….31
第四章 討論………………………………………………………….32
參考文獻……………………………………………………………..35
圖表……………………………………………………………………42
附圖……………………………………………………………………69
Avramouli, A., Tsochas, S., Mandala, E., Katodritou, E., Ioannou, M., Ritis, K., and Speletas, M. (2009). Methylation status of RASSF1A in patients with chronic myeloid leukemia. Leuk Res 33, 1130-1132.
Aylon, Y., Michael, D., Shmueli, A., Yabuta, N., Nojima, H., and Oren, M. (2006). A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 20, 2687-2700.
Bardet, P.L. (2009). [Developmental control of organ growth by the Hippo pathway]. Med Sci (Paris) 25, 253-257.
Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M., and Issa, J.P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72, 141-196.
Baylin, S.B., Hoppener, J.W., de Bustros, A., Steenbergh, P.H., Lips, C.J., and Nelkin, B.D. (1986). DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46, 2917-2922.
Bennett, F.C., and Harvey, K.F. (2006). Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16, 2101-2110.
Bernardo, M.E., Zaffaroni, N., Novara, F., Cometa, A.M., Avanzini, M.A., Moretta, A., Montagna, D., Maccario, R., Villa, R., Daidone, M.G., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67, 9142-9149.
Bianco, P., and Gehron Robey, P. (2000). Marrow stromal stem cells. J Clin Invest 105, 1663-1668.
Caplan, A.I. (1994). The mesengenic process. Clin Plast Surg 21, 429-435.
Chen, W.Y., Wang, D.H., Yen, R.C., Luo, J., Gu, W., and Baylin, S.B. (2005). Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123, 437-448.
Chow, L.S., Lam, C.W., Chan, S.Y., Tsao, S.W., To, K.F., Tong, S.F., Hung, W.K., Dammann, R., Huang, D.P., and Lo, K.W. (2006). Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 25, 310-316.
Cohen, Y., Singer, G., Lavie, O., Dong, S.M., Beller, U., and Sidransky, D. (2003). The RASSF1A tumor suppressor gene is commonly inactivated in adenocarcinoma of the uterine cervix. Clin Cancer Res 9, 2981-2984.
Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S., and Pfeifer, G.P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25, 315-319.
Donninger, H., Vos, M.D., and Clark, G.J. (2007). The RASSF1A tumor suppressor. J Cell Sci 120, 3163-3172.
Esteller, M. (2002). CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427-5440.
Feinberg, A.P., and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92.
Ferguson, L.R. (2009). Role of dietary mutagens in cancer and atherosclerosis. Curr Opin Clin Nutr Metab Care.
Fleuriel, C., Touka, M., Boulay, G., Guerardel, C., Rood, B.R., and Leprince, D. (2009). HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol 41, 26-33.
Fujii, H., Biel, M.A., Zhou, W., Weitzman, S.A., Baylin, S.B., and Gabrielson, E. (1998). Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene 16, 2159-2164.
Gonzalez-Gomez, P., Bello, M.J., Alonso, M.E., Lomas, J., Arjona, D., Campos, J.M., Vaquero, J., Isla, A., Lassaletta, L., Gutierrez, M., et al. (2003). CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas. Clin Cancer Res 9, 5601-5606.
Greger, V., Passarge, E., Hopping, W., Messmer, E., and Horsthemke, B. (1989). Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83, 155-158.
Harvey, K., and Tapon, N. (2007). The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 7, 182-191.
Herman, J.G. (2005). Epigenetic changes in cancer and preneoplasia. Cold Spring Harb Symp Quant Biol 70, 329-333.
Hermann, A., Goyal, R., and Jeltsch, A. (2004). The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279, 48350-48359.
Hisaoka, M., Tanaka, A., and Hashimoto, H. (2002). Molecular alterations of h-warts/LATS1 tumor suppressor in human soft tissue sarcoma. Lab Invest 82, 1427-1435.
Huntly, B.J., and Gilliland, D.G. (2005). Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5, 311-321.
Iacobuzio-Donahue, C.A. (2009). Epigenetic changes in cancer. Annu Rev Pathol 4, 229-249.
Im, G.I., Shin, Y.W., and Lee, K.B. (2005). Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 13, 845-853.
In ''t Anker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., de Groot-Swings, G.M., Claas, F.H., Fibbe, W.E., and Kanhai, H.H. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22, 1338-1345.
Kato, Y., Kaneda, M., Hata, K., Kumaki, K., Hisano, M., Kohara, Y., Okano, M., Li, E., Nozaki, M., and Sasaki, H. (2007). Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16, 2272-2280.
Kawamoto, K., Hirata, H., Kikuno, N., Tanaka, Y., Nakagawa, M., and Dahiya, R. (2008). DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines. Int J Cancer 123, 535-542.
Kioulafa, M., Kaklamanis, L., Mavroudis, D., Georgoulias, V., and Lianidou, E.S. (2009). Prognostic significance of RASSF1A promoter methylation in operable breast cancer. Clin Biochem.
Kondo, T. (2007). Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 3, 245-250.
Lai, Z.C., Wei, X., Shimizu, T., Ramos, E., Rohrbaugh, M., Nikolaidis, N., Ho, L.L., and Li, Y. (2005). Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675-685.
Leu, Y.W., Yan, P.S., Fan, M., Jin, V.X., Liu, J.C., Curran, E.M., Welshons, W.V., Wei, S.H., Davuluri, R.V., Plass, C., et al. (2004). Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res 64, 8184-8192.
Leung, W.K., Yu, J., Ng, E.K., To, K.F., Ma, P.K., Lee, T.L., Go, M.Y., Chung, S.C., and Sung, J.J. (2001). Concurrent hypermethylation of multiple tumor-related genes in gastric carcinoma and adjacent normal tissues. Cancer 91, 2294-2301.
Lin, Q., Geng, J., Ma, K., Yu, J., Sun, J., Shen, Z., Bao, G., Chen, Y., Zhang, H., He, Y., et al. (2009). RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China. J Cancer Res Clin Oncol.
Lomas, J., Bello, M.J., Arjona, D., Alonso, M.E., Martinez-Glez, V., Lopez-Marin, I., Aminoso, C., de Campos, J.M., Isla, A., Vaquero, J., et al. (2005). Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer 42, 314-319.
McClatchey, A.I., and Giovannini, M. (2005). Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin. Genes Dev 19, 2265-2277.
Namihira, M., Kohyama, J., Abematsu, M., and Nakashima, K. (2008). Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci 363, 2099-2109.
Narod, S., Lynch, H., Conway, T., Watson, P., Feunteun, J., and Lenoir, G. (1993). Increasing incidence of breast cancer in family with BRCA1 mutation. Lancet 341, 1101-1102.
Nephew, K.P., and Huang, T.H. (2003). Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 190, 125-133.
Opavsky, R., Wang, S.H., Trikha, P., Raval, A., Huang, Y., Wu, Y.Z., Rodriguez, B., Keller, B., Liyanarachchi, S., Wei, G., et al. (2007). CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet 3, 1757-1769.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
Qian, Z.R., Sano, T., Yoshimoto, K., Yamada, S., Ishizuka, A., Mizusawa, N., Horiguchi, H., Hirokawa, M., and Asa, S.L. (2005). Inactivation of RASSF1A tumor suppressor gene by aberrant promoter hypermethylation in human pituitary adenomas. Lab Invest 85, 464-473.
Saxonov, S., Berg, P., and Brutlag, D.L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103, 1412-1417.
Schagdarsurengin, U., Gimm, O., Hoang-Vu, C., Dralle, H., Pfeifer, G.P., and Dammann, R. (2002). Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res 62, 3698-3701.
Shen, H.M., and Ong, C.N. (1996). Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. Mutat Res 366, 23-44.
Sirchia, S.M., Ferguson, A.T., Sironi, E., Subramanyan, S., Orlandi, R., Sukumar, S., and Sacchi, N. (2000). Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene 19, 1556-1563.
St John, M.A., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., Parlow, A.F., McGrath, J., and Xu, T. (1999). Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21, 182-186.
Takahashi, Y., Miyoshi, Y., Takahata, C., Irahara, N., Taguchi, T., Tamaki, Y., and Noguchi, S. (2005). Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11, 1380-1385.
Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D.A., and Hariharan, I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478.
Ting, A.H., McGarvey, K.M., and Baylin, S.B. (2006). The cancer epigenome--components and functional correlates. Genes Dev 20, 3215-3231.
Vaissiere, T., Sawan, C., and Herceg, Z. (2008). Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659, 40-48.
Valenta, T., Lukas, J., Doubravska, L., Fafilek, B., and Korinek, V. (2006). HIC1 attenuates Wnt signaling by recruitment of TCF-4 and beta-catenin to the nuclear bodies. EMBO J 25, 2326-2337.
Voorhoeve, P.M., le Sage, C., Schrier, M., Gillis, A.J., Stoop, H., Nagel, R., Liu, Y.P., van Duijse, J., Drost, J., Griekspoor, A., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169-1181.
Wong, I.H., Johnson, P.J., Lai, P.B., Lau, W.Y., and Lo, Y.M. (2000). Tumor-derived epigenetic changes in the plasma and serum of liver cancer patients. Implications for cancer detection and monitoring. Ann N Y Acad Sci 906, 102-105.
Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjoblom, T., Leary, R.J., Shen, D., Boca, S.M., Barber, T., Ptak, J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science 318, 1108-1113.
Wu, A., Oh, S., Wiesner, S.M., Ericson, K., Chen, L., Hall, W.A., Champoux, P.E., Low, W.C., and Ohlfest, J.R. (2008). Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev 17, 173-184.
Wu, H., and Sun, Y.E. (2006). Epigenetic regulation of stem cell differentiation. Pediatr Res 59, 21R-25R.
Yu, J., Ni, M., Xu, J., Zhang, H., Gao, B., Gu, J., Chen, J., Zhang, L., Wu, M., Zhen, S., et al. (2002). Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer 2, 29.
Zhang, M.L., Lu, S., and Zheng, S.S. (2008). Epigenetic changes of pituitary tumor-derived transforming gene 1 in pancreatic cancer. Hepatobiliary Pancreat Dis Int 7, 313-317.
Zhao, Z.H., Geng, X.P., Zhu, L.X., Li, H.M., and Liew, C.T. (2005). [Hypermethylation of Ras association domain family protein 1A, hypermethylated in cancer 1 and p73 genes in hepatocellular carcinoma]. Zhonghua Wai Ke Za Zhi 43, 1528-1532.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top