跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 02:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾瑀翔
研究生(外文):Yu-shiang Tzeng
論文名稱:探討受第三號誘餌受體調控樹突狀細胞之細胞表現及對實驗性自體免疫腦脊髓炎模式中輔助型T細胞的影響
論文名稱(外文):Investigation of dendritic cells modulated by decoy receptor 3 and the effects on helper T cells in EAE model
指導教授:吳淑芬吳淑芬引用關係
指導教授(外文):Shu-fen Wu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:生命科學系暨分子生物研究所暨生物醫學研究
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:第三號誘餌受體樹突狀細胞實驗性自體免疫腦脊髓炎輔助型T細胞
外文關鍵詞:helper T cellEAEdendritic celldecoy receptor 3DcR3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
第三號誘餌受體(Decoy Receptor 3)過去發現是許多腫瘤細胞會大量表現的分泌型受體;而第三號誘餌受體結合的對象為FasL、LIGHT及TL1A,其主要功能為阻礙FasL和Fas receptor的結合,可使腫瘤細胞避免被T細胞誘發細胞凋亡而清除。 然而,在許多的研究中指出,第三號誘餌受體不只可以阻止細胞凋亡,還可以進一步影響樹突狀細胞的分化及成熟;甚至在高濃度的第三號誘導受體的刺激下,可以促 進樹突狀細胞的細胞凋亡。在其他的研究中指出,以第三號誘餌受體處理過的自體免疫腦脊髓炎老鼠淋巴結細胞,其第二十三介白素及第十七介白素等參與第十七輔助型T細胞反應的細胞激素會受到抑制,有些研究甚至直接將第三號誘餌受體透過靜脈注射到老鼠體內以治療自體免疫疾病,因此應用第三號誘餌受體在自體免疫疾病的治療儼然成了一個新的研究方向。在過去實驗室的研究發現,實驗性自體免疫腦脊髓炎老鼠在以靜脈注射打入第三號誘餌受體刺激的樹突狀細胞後,可以降低實驗性自體免疫腦脊髓炎發病的現象,因此我們想進一步研究第三號誘餌受體造成樹突狀細胞的何種細胞變化以及其對T細胞的哪些影響才造成疾病的下降。在我們的研究中發現,將自體免疫腦脊髓炎老鼠取出的脾臟細胞和這種第三號誘餌受體刺激過的樹突狀細胞培養在一起,發現受第三號誘餌受體刺激之樹突狀細胞可在高比例的情況下抑制脾臟細胞的發炎反應,除了減低在實驗性自體免疫腦脊髓炎扮演重要角色的干擾素-gamma和第十七介白素之表現量,也可抑制脾臟細胞之細胞分裂。在實驗中第十七輔助型T細胞之比例也有明顯下降的趨勢。由結果可以發現第三號誘餌受體處理過的骨髓分化樹突狀細胞能夠抑制實驗性自體免疫腦脊髓炎老鼠脾臟的免疫反應。
DcR3 (Decoy receptor 3) is a soluble receptor that binds to several death ligand including FasL, LIGHT and TL1A. DcR3 was first detected from tumor patients and regarded as an immune suppressor, which helps tumor cells escape from immune cells induced apoptosis by blocking interaction between Fas and FasL. DcR3 could also modulate dendritic cell to influence it’s maturation and differentiation and even induced DC apoptosis in high concentration of DcR3. In recent studies, scientist indicated that DcR3 could suppress Th17 immune responses through decreasing IL-23 in mouse total lymphocyte. IL-23 is a cytokine secreted from antigen presenting cells, it could trigger T cell differentiate into Th17 which plays an important role in autoimmune disease. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis caused by Th1 and Th17 autoimmune cells attacking myelin sheath and causing paralysis, anaesthesia and muscle atrophy etc... . In this study, we try to investigate the cytokine profiles through DcR3 modulated dendritic cell cocultured with EAE mouse splenocytes. The secretion of IFN-γ、IL-17、IL-6 and TNF-αform EAE mouse splenocyte was decreased when the cocultured ratio of DcR3-BMDC and EAE mouse splenocyte was 1:1. Furthermore, we found that the percentage of regulatory T cell was increased when DcR3-DC were cocultured with EAE mouse splenocyte at 1:1 high ratio. These result suggests that DcR3 treated DC might suppress the immune response in EAE model.
目錄 I
中文摘要 1
英文摘要 3
緒論 4
一、 實驗性自體免疫腦脊髓炎(experimental autoimmune encephalomyelitis,EAE) 4
二、 輔助型T淋巴球(Helper T lymphocyte, Th) 6
三、 調節性T細胞(Regulatory T cell,Treg) 9
四、 輔助型T細胞和實驗性自體免疫腦脊髓炎的關聯性 10
五、 樹突狀細胞(Dendritic cells) 14
六、 樹突狀細胞所分泌之細胞激素與實驗性自體免疫腦脊髓炎中輔助型T細胞之關係 16
七、 第三號誘餌受體(Decoy receptor 3,DcR3) 17
研究目的 20
材料與方法 21
實驗材料 21
一、 昆蟲細胞之培養 21
二、 高效價之第三號誘餌受體重組病毒載體 21
三、 第三號誘餌受體蛋白質之純化 21
四、 蛋白質濃度之測定 22
六、 利用西方點墨法 (Western Blot) 確定純化出來的第三號誘餌受體重組蛋白 24
七、 利用Jurkat 細胞株來探討第三號誘餌受體的生物活性 24
八、 骨髓分化樹突狀細胞(Bone marrow derived dendritic cells)之培養 25
九、 骨髓分化樹突狀細胞之表面抗原分析 26
十、 誘導實驗性自體免疫腦脊髓炎 (EAE) 26
十一、 細胞內部的細胞激素染色法 (Intracellular Cytokine Staining,ICS) 26
十二、 酵素免疫分析法(Enzyme-linked immunoassay,ELISA) 27
十三、 CFSE之細胞染色 27
十四、 RNA 純化 27
十五、 反轉錄聚合酵素鏈鎖反應 27
十六、 聚合酵素鏈鎖反應 28
十七、 即時酵素聚合鏈鎖反應 29
實驗方法 30
一、 昆蟲細胞之培養 30
二、 第三號誘餌受體重組蛋白質之大量製備與病毒製備 30
三、 第三號誘餌受體重組蛋白質之純化 31
四、 蛋白質濃度之測定 32
五、 蛋白質純度之測定 32
六、 利用西方點墨法 (Western Blot) 確定純化出來的第三號誘餌受體重組蛋白 33
七、 利用 Jurkat 細胞株來探討第三號誘餌受體重組蛋白的生物活性 34
八、 骨髓樹突狀細胞(Bone-marrow derived dendritic cell,BMDC)之培養 35
九、 骨髓樹突狀細胞之表面抗原分析 36
十、 誘導實驗性自體免疫腦脊髓炎 36
十一、 樹突狀細胞與實驗性自體免疫腦脊髓炎老鼠脾臟細胞之共同培養 37
十二、 細胞內部的細胞激素染色法 (intracellular cytokine staining,ICS) 37
十三、 分析樹突狀細胞與實驗性自體免疫腦脊髓炎鼠脾臟細胞共同培養所表現的細胞激素 38
十四、 以CFSE分析和樹突狀細胞共同培養的實驗性自體免疫腦脊髓炎鼠脾臟細胞之細胞分裂(proliferation)現象 39
十五、 以脂多醣(Lipopolysaccharide,LPS)刺激骨髓樹突狀細胞分泌細胞激素 39
實驗結果 41
一、 以SF-21昆蟲細胞生產第三號誘餌受體重組蛋白 41
二、 確認第三號誘餌受體重組蛋白具有其正常功能 41
三、 第三號誘餌受體重組蛋白會影響骨髓分化樹突狀細胞之細胞型態 42
四、 骨髓分化樹突狀細胞受脂多醣刺激後之細胞激素表現 43
五、 第三號誘餌受體重組蛋白刺激樹突狀細胞在高比例時可以抑制實驗性自體免疫腦脊髓炎老鼠之脾臟細胞對MOG刺激所造成之發炎反應 44
六、 第三號誘餌受體重組蛋白刺激樹突狀細胞刺激增加實驗性自體免疫腦脊髓炎老鼠脾臟細胞中Foxp3+細胞及CD4+CD25+Foxp3+細胞的比率 47
七、 第三號誘餌受體重組蛋白刺激樹突狀細胞造成脾臟細胞細胞分裂的下降 48
結果討論 50
圖一、 第三號誘餌受體重組蛋白之生化分析 55
圖二、第三號誘餌受體重組蛋白之功能測試 56
圖三、由第三號誘餌受體重組蛋白刺激所培養出的樹突狀細胞 58
圖四、將樹突狀細胞以芝多醣刺激不同時間並分析其各種細胞激素的 59
mRNA表現量 59
d. 61
圖五、觀察第十七型輔助型T細胞在實驗性自體免疫腦脊髓炎老鼠脾臟細胞和不同比例樹突狀細胞共同培養下之表現情形 61
圖六、觀察第一型輔助型T細胞在實驗性自體免疫腦脊髓炎老鼠脾臟細胞和不同比例樹突狀細胞共同培養下之表現情形 63
圖七、觀察第二型輔助型T細胞在實驗性自體免疫腦脊髓炎老鼠脾臟細胞和不同比例樹突狀細胞共同培養下之表現情形 65
圖八、觀察調節性T細胞在實驗性自體免疫腦脊髓炎老鼠脾臟細胞和不同比例樹突狀細胞共同培養下之表現情形 67
圖九、觀察樹突狀細胞在和實驗性自體免疫腦脊隨炎老鼠脾臟細胞依不同比例共同培養下之表現情形 68
圖十、 利用CFSE分析樹突狀細胞對脾臟細胞分裂能力之影響 69
圖十一、將樹突狀細胞以芝多醣刺激不同時間並分析其第二十三介白素之mRNA表現量 70
Reference

1.http://www.tfrd.org.tw/rare/typeCont.php?sno=0706&kind_id=07
2.http://www.tfrd.org.tw/rare/typeCont.php?sno=0706&kind_id=07
3.Baxter, A.G. 2007. The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol, 7: 904-12.
4.Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., Leonard, W.J., Littman, D.R. 2007. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 8: 967-74.
5.Ueda, H., Howson, J.M., Esposito, L., Heward, J., Snook, H., Chamberlain, G., Rainbow, D.B., Hunter, K.M., Smith, A.N., Di Genova, G. et al. 2003. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 423: 506-11.
6.Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F., Ziegler, S.F. 2001. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem, 276: 37672-9.
7.Nishioka, T., Shimizu, J., Iida, R., Yamazaki, S., Sakaguchi, S. 2006. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol, 176: 6586-93.
8.Seo, N., Tokura, Y., Takigawa, M., Egawa, K. 1999. Depletion of IL-10- and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol, 163: 242-9.
9.Nelson, B.H. 2004. IL-2, regulatory T cells, and tolerance. J Immunol, 172: 3983-8.
10.Segal, B.M. 2003. Experimental autoimmune encephalomyelitis: cytokines, effector T cells, and antigen-presenting cells in a prototypical Th1-mediated autoimmune disease. Curr Allergy Asthma Rep, 3: 86-93.
11.Liblau, R.S., Singer, S.M., McDevitt, H.O. 1995. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today, 16: 34-8.
12.Ferber, I.A., Brocke, S., Taylor-Edwards, C., Ridgway, W., Dinisco, C., Steinman, L., Dalton, D., Fathman, C.G. 1996. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol, 156: 5-7.
13.Matthys, P., Vermeire, K., Mitera, T., Heremans, H., Huang, S., Billiau, A. 1998. Anti-IL-12 antibody prevents the development and progression of collagen-induced arthritis in IFN-gamma receptor-deficient mice. Eur J Immunol, 28: 2143-51.
14.Pettinelli, C.B., McFarlin, D.E. 1981. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2- T lymphocytes. J Immunol, 127: 1420-3.
15.Ben-Nun, A., Cohen, I.R. 1981. Vaccination against autoimmune encephalomyelitis (EAE): attenuated autoimmune T lymphocytes confer resistance to induction of active EAE but not to EAE mediated by the intact T lymphocyte line. Eur J Immunol, 11: 949-52.
16.Renno, T., Krakowski, M., Piccirillo, C., Lin, J.Y., Owens, T. 1995. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol, 154: 944-53.
17.Bettelli, E., Sullivan, B., Szabo, S.J., Sobel, R.A., Glimcher, L.H., Kuchroo, V.K. 2004. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med, 200: 79-87.
18.Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-Gould, A., Strober, S., Cannella, B., Allard, J. et al. 2002. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med, 8: 500-8.
19.Matusevicius, D., Kivisakk, P., He, B., Kostulas, N., Ozenci, V., Fredrikson, S., Link, H. 1999. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler, 5: 101-4.
20.Steinman, L. 2007. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med, 13: 139-45.
21.Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B., Sedgwick, J.D., McClanahan, T., Kastelein, R.A., Cua, D.J. 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 201: 233-40.
22.Korn, T., Reddy, J., Gao, W., Bettelli, E., Awasthi, A., Petersen, T.R., Backstrom, B.T., Sobel, R.A., Wucherpfennig, K.W., Strom, T.B. et al. 2007. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med, 13: 423-31.
23.Karpus, W.J., Swanborg, R.H. 1989. CD4+ suppressor cells differentially affect the production of IFN-gamma by effector cells of experimental autoimmune encephalomyelitis. J Immunol, 143: 3492-7.
24.McDonald, A.H., Swanborg, R.H. 1988. Antigen-specific inhibition of immune interferon production by suppressor cells of autoimmune encephalomyelitis. J Immunol, 140: 1132-8.
25.McHugh, R.S., Shevach, E.M. 2002. The role of suppressor T cells in regulation of immune responses. J Allergy Clin Immunol, 110: 693-702.
26.McGeachy, M.J., Stephens, L.A., Anderton, S.M. 2005. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol, 175: 3025-32.
27.Reddy, J., Illes, Z., Zhang, X., Encinas, J., Pyrdol, J., Nicholson, L., Sobel, R.A., Wucherpfennig, K.W., Kuchroo, V.K. 2004. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A, 101: 15434-9.
28.Stephens, L.A., Gray, D., Anderton, S.M. 2005. CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci U S A, 102: 17418-23.
29.Reddy, J., Waldner, H., Zhang, X., Illes, Z., Wucherpfennig, K.W., Sobel, R.A., Kuchroo, V.K. 2005. Cutting edge: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J Immunol, 175: 5591-5.
30.Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D., Anderton, S.M. 2002. B cells regulate autoimmunity by provision of IL-10. Nat Immunol, 3: 944-50.
31.Cua, D.J., Hutchins, B., LaFace, D.M., Stohlman, S.A., Coffman, R.L. 2001. Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis. J Immunol, 166: 602-8.
32.Kohm, A.P., McMahon, J.S., Podojil, J.R., Begolka, W.S., DeGutes, M., Kasprowicz, D.J., Ziegler, S.F., Miller, S.D. 2006. Cutting Edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol, 176: 3301-5.
33.Uhlig, H.H., Coombes, J., Mottet, C., Izcue, A., Thompson, C., Fanger, A., Tannapfel, A., Fontenot, J.D., Ramsdell, F., Powrie, F. 2006. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol, 177: 5852-60.
34.Zhang, X., Reddy, J., Ochi, H., Frenkel, D., Kuchroo, V.K., Weiner, H.L. 2006. Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. Int Immunol, 18: 495-503.
35.Fearon, D.T., Locksley, R.M. 1996. The instructive role of innate immunity in the acquired immune response. Science, 272: 50-3.
36.Wan, H., Dupasquier, M. 2005. Dendritic cells in vivo and in vitro. Cell Mol Immunol, 2: 28-35.
37.Persky, M.E., Murphy, K.M., Farrar, J.D. 2005. IL-12, but not IFN-alpha, promotes STAT4 activation and Th1 development in murine CD4+ T cells expressing a chimeric murine/human Stat2 gene. J Immunol, 174: 294-301.
38.Langowski, J.L., Zhang, X., Wu, L., Mattson, J.D., Chen, T., Smith, K., Basham, B., McClanahan, T., Kastelein, R.A., Oft, M. 2006. IL-23 promotes tumour incidence and growth. Nature, 442: 461-5.
39.McGeachy, M.J., Cua, D.J. 2007. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol, 19: 372-6.
40.Owaki, T., Asakawa, M., Fukai, F., Mizuguchi, J., Yoshimoto, T. 2006. IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways. J Immunol, 177: 7579-87.
41.Colgan, J., Rothman, P. 2006. All in the family: IL-27 suppression of T(H)-17 cells. Nat Immunol, 7: 899-901.
42.Gran, B., Zhang, G.X., Yu, S., Li, J., Chen, X.H., Ventura, E.S., Kamoun, M., Rostami, A. 2002. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol, 169: 7104-10.
43.Becher, B., Durell, B.G., Noelle, R.J. 2002. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest, 110: 493-7.
44.Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T. et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 421: 744-8.
45.Murphy, C.A., Langrish, C.L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R.A., Sedgwick, J.D., Cua, D.J. 2003. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 198: 1951-7.
46.Veldhoen, M., Hocking, R.J., Flavell, R.A., Stockinger, B. 2006. Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol, 7: 1151-6.
47.Pitti, R.M., Marsters, S.A., Lawrence, D.A., Roy, M., Kischkel, F.C., Dowd, P., Huang, A., Donahue, C.J., Sherwood, S.W., Baldwin, D.T. et al. 1998. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 396: 699-703.
48.Yu, K.Y., Kwon, B., Ni, J., Zhai, Y., Ebner, R., Kwon, B.S. 1999. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem, 274: 13733-6.
49.Migone, T.S., Zhang, J., Luo, X., Zhuang, L., Chen, C., Hu, B., Hong, J.S., Perry, J.W., Chen, S.F., Zhou, J.X. et al. 2002. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity, 16: 479-92.
50.Bai, C., Connolly, B., Metzker, M.L., Hilliard, C.A., Liu, X., Sandig, V., Soderman, A., Galloway, S.M., Liu, Q., Austin, C.P. et al. 2000. Overexpression of M68/DcR3 in human gastrointestinal tract tumors independent of gene amplification and its location in a four-gene cluster. Proc Natl Acad Sci U S A, 97: 1230-5.
51.Shen, H.W., Wu, Y.L., Peng, S.Y. 2003. [Overexpression and genomic amplification of decoy receptor 3 in hepatocellular carcinoma and significance thereof]. Zhonghua Yi Xue Za Zhi, 83: 744-7.
52.Roth, W., Isenmann, S., Nakamura, M., Platten, M., Wick, W., Kleihues, P., Bahr, M., Ohgaki, H., Ashkenazi, A., Weller, M. 2001. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res, 61: 2759-65.
53.Yang, C.R., Hsieh, S.L., Teng, C.M., Ho, F.M., Su, W.L., Lin, W.W. 2004. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res, 64: 1122-9.
54.Hsu, T.L., Chang, Y.C., Chen, S.J., Liu, Y.J., Chiu, A.W., Chio, C.C., Chen, L., Hsieh, S.L. 2002. Modulation of dendritic cell differentiation and maturation by decoy receptor 3. J Immunol, 168: 4846-53.
55.You, R.I., Chang, Y.C., Chen, P.M., Wang, W.S., Hsu, T.L., Yang, C.Y., Lee, C.T., Hsieh, S.L. 2008. Apoptosis of dendritic cells induced by decoy receptor 3 (DcR3). Blood, 111: 1480-8.
56.Wu, S.F., Liu, T.M., Lin, Y.C., Sytwu, H.K., Juan, H.F., Chen, S.T., Shen, K.L., Hsi, S.C., Hsieh, S.L. 2004. Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. J Leukoc Biol, 75: 293-306.
57.Bamias, G., Siakavellas, S.I., Stamatelopoulos, K.S., Chryssochoou, E., Papamichael, C., Sfikakis, P.P. 2008. Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clin Immunol, 129: 249-55.
58.Creusot, R.J., Yaghoubi, S.S., Chang, P., Chia, J., Contag, C.H., Gambhir, S.S., Fathman, C.G. 2009. Lymphoid tissue-specific homing of bone marrow-derived dendritic cells. Blood, 113: 6638-47.
59.Sen, C.K., Sashwati, R., Packer, L. 1999. Fas mediated apoptosis of human Jurkat T-cells: intracellular events and potentiation by redox-active alpha-lipoic acid. Cell Death Differ, 6: 481-91.
60.van Rijt, L.S., Vos, N., Willart, M., Kleinjan, A., Coyle, A.J., Hoogsteden, H.C., Lambrecht, B.N. 2004. Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not reactivation, of TH2 effector responses in a mouse model of asthma. J Allergy Clin Immunol, 114: 166-73.
61.Zhang, G.Y., Hu, M., Wang, Y.M., Alexander, S.I. 2009. Foxp3 as a marker of tolerance induction versus rejection. Curr Opin Organ Transplant, 14: 40-5.
62.Wells, J.W., Darling, D., Farzaneh, F., Galea-Lauri, J. 2005. Influence of interleukin-4 on the phenotype and function of bone marrow-derived murine dendritic cells generated under serum-free conditions. Scand J Immunol, 61: 251-9.
63.Turnquist, H.R., Raimondi, G., Zahorchak, A.F., Fischer, R.T., Wang, Z., Thomson, A.W. 2007. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol, 178: 7018-31.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊