跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俞妏
研究生(外文):Yu-wen Chen
論文名稱:模糊環境下經濟生產批量再訂購點存貨模式之分析
論文名稱(外文):Economic Production Lot Size-Reorder Point Inventory Model with Fuzzy Demands
指導教授:陳世彬陳世彬引用關係
指導教授(外文):Shih-pin Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:企業管理所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:76
中文關鍵詞:批量再訂購點經濟生產批量存貨管理模糊理論
外文關鍵詞:Fuzzy setsEconomic Production QuantityInventory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1039
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
許多學者針對模糊存貨問題作廣泛地探討,本文所探討的模糊存貨問題,在於建立模糊環境下經濟生產批量再訂購點存貨模式;其中使用α截集代表模糊需求,進一步建立模糊總存貨成本函數,尋求最佳的訂購量Q與再訂購點L,使得總成本最小。
依據不同的再訂購點與需求綠的關係,可歸結出五個不同的情況,並一一討論。論文中使用Yager指標排序法,對模糊總存貨成本函數解模糊後,產生總成本指標,以求最小化總成本的訂購量Q與再訂購點L。當需求率為梯形模糊數時,求出全域最佳訂購量Q與再訂購點L;最後以一組數值例子說明,本篇研究的方法可以容易地求解。
本研究將有助於決策者在面臨存貨問題時,得以有效地解決此類問題,提高存貨模式在實務上的應用行;此外,本文的研究方法亦可作為其它模糊存貨模式建構的參考。
Fuzzy inventory problems are often encountered such that they have discussed widely by several scholars. This paper investigates the economics production lot size-reorder point inventory problem with fuzzy demands being fuzzy numbers. The fuzzy demands in this model is presented by the cuts of fuzzy demands and then the fuzzy total inventory cost for finding inventory policy of (Q,L), where Q is the order quantity and L is the reorder point, is constructed. Five cases are discussed depending on different range of L. Then Yager’s ranking index is adopted to find the optimal Q* and L* with minimum index of fuzzy total cost. Moreover, when the fuzzy demand is a trapezoidal fuzzy number, we can derive the closed-form for the global optimal solutions to Q* and L*. Finally, a numerical example is investigated to illustrate the validity of this model. The method proposed in this paper is helpful for decision makers to control inventory problems effectively in fuzzy environments.
Table of Contents

Abstract I
Table of Contents II
List of Figures IV
List of Tables V

Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Research Objectives 3
1.3 Research Range 3
1.4 Research Method 4

Chapter 2 Literature Review 8
2.1 Fuzzy Inventory Model Research 8
2.1.1 Fuzzy Inventory Problem in Single Period 8
2.1.2 Fuzzy Inventory Problem under the EOQ model 9
2.2.3 Fuzzy Inventory Problem under the EPQ model 10
2.2 Fuzzy Theory 10
2.2.1 Fuzzy Sets and Membership Function 11
2.2.2 Normal Fuzzy Sets 13
2.3.3 Convex Fuzzy Sets 13
2.2.4 Fuzzy Number 13
2.2.5 α-Cut 13
2.2.6 Extension Principle 14

Chapter 3 Lot Size-Reorder Point Inventory Model in Crisp Environments 15
3.1 Problem Statement 15
3.2 Model Building 16
3.2.1 L≧DT 17
3.2.2 L≦DT 18

Chapter 4 Lot Size-Reorder Point Inventory Model with Fuzzy Demands 22
4.1 The Proposed Model 22
4.2 Transformation 25

Chapter 5 Solution Derivation 27
5.1 Yager’s Index of Fuzzy Total Cost Function 27
5.2 Fuzzy Total Cost Function with Trapezoidal Fuzzy Demands 50
5.3 Numerical Example 60

Chapter 6 Conclusions and Futher Work 64
References 67
References
[1]L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1, 3-28 (1978).
[2]J. Yen, R. Langari, Fuzzy Logic Intelligence, Control, and Information, Prentice Hall Publishing Company (1999).
[3]L.A Zadeh, Fuzzy sets, Information and control 8,3, 338-353 (1965).
[4]K.S. Park, Fuzzy-set theoretic interpretation of economic order quantity, IEEE Trans, Syst.. Man. Cybern. SMC-17, 1082-1084 (1987).
[5]M. Vujosevic, D. Petrovic and R. Petrovic, EOQ formula when inventory cost is fuzzy, International Journal of Production Economics 45, 1-3, 499-504 (1996).
[6]D. Petrovic, R. Petrovic and M. Vujosevic, Fuzzy models for the newsboy problem, International Journal of Production Economics 45, 1-3, 435-441 (1996).
[7]C. Kao and W.K. Hsu, A single-period inventory model with fuzzy demand, Computers & Mathematics with Applications 10-11, 841-848 (2000).
[8]H.M. Lee and J.S. Yao, Economic production quantity for fuzzy demand fuzzy production quantity, European Journal of Operational Research 109, 203-211 (1998).
[9]S.C. Chang, Fuzzy production inventory for fuzzy product quantity with triangular fuzzy number, Fuzzy Sets and Systems 107, 37-57 (1999).
[10]Kaj-Mikael Björk, The economic production quantity problem with a finite production rate and fuzzy cycle time, 41st Hawaii International Conference on System Sciences (2008).
[11]C. Kao and W.K. Hsu, Lot size-reorder point inventory model with fuzzy demands, Computers & Mathematics with Applications 43, 6-7, 841-848 (2001).
[12]R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Science 24, 143-161 (1981).
[13]H.Ishii and T.Konno, A stochastic inventory problem with fuzzy shortage cost, European Journal of Operational Research 106, 1, 90-94 (1998).
[14]Z. Shao and X. Ji, Fuzzy multi-product constraint newsboy problem, Applied Mathematics and Computation 180, 1, 7-15 (2006).
[15]S.P Chen and Y.H. Ho, A fuzzy inventory model with quantity discounts, master thesis, Graduate Institute of Business Administration, National Chung Cheng University (2007) (in Chinese).
[16]C. Kao and W.K. Hsu, Lot size-reorder point inventory model with fuzzy demands, doctoral dissertation, Department of Industrial Information Management, National Cheng Kung University (2001) (in Chinese).
[17]R. Petrovic and D. Petrovic, Multicriteria ranking of inventory replenishment policies in the presence of uncertainty in customer demand, International Journal of Production Economics 71, 1-3, 439-446 (2001).
[18]S. Mondal and M. Maiti, Muti-item fuzzy EOQ models using genetic algorithm, Computer & Industrial Engineering 44, 1, 105-117 (2003).
[19]H.M. Lee and J.S. Yao, Economic order quantity in fuzzy sense for inventory without backorder model, Fuzzy Sets and Systems 105, 13-31 (1999).
[20]J.S. Yao and H.M. Lee, Fuzzy inventory with or without backorder for fuzzy order quantity with trapezoid fuzzy number, Fuzzy Sets and Systems 105, 3, 311-337 (1999).
[21]D.C. Lin and J.S. Yao, Fuzzy economic production for production inventory, Fuzzy Sets and Systems 111, 465-495 (2000).
[22]P.T Chang and C.H. Chang, An elaborative unit cost structure-based fuzzy economic production quantity model, Mathematical and Computer Modelling 43, 1337-1356 (2006).
[23]Sahidul Islam, Tapan Kumar Roy, Fuzzy multi-item economic production quantity model under space constraint: a geometric programming approach, Applied Mathematics and Computation 184, 326-335 (2007).
[24]S.H. Chena and S.M. Chang, Optimization of fuzzy production inventory model with unrepairable defective products, International Journal of Production Economics 113, 887-894 (2008).
[25]N.K. Mahapatra and M. Maiti, Production-inventory model for a deteriorating item with imprecise preparation time for production in a finite time horizon, Asia-Pacific Journal of Operational Research 23, 171-192 (2006).
[26]M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, Second Edition, John Wiley and Sons, New York (1993).
[27]P.E. Gill, W. Murray and M.H. Wright, Practical Optimization, Academic Press, New York (1981).
[28]Jerry Banks, W.J. Fabrycky, Procurement and Inventory Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ (1987).
[29]R.J. Tersine, Principles of Inventory and Materials Management, Forth Edition, Prentice-Hall, Englewood Cliffs, NJ (1994).
[30]K. Maity and M. Maiti, Possibility and necessary constraints and their defuzzification – A multi-item production-inventory scenario via optimal control theory, European Journal of Operational Research 177, 882-896 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top