跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:尤仁弘
研究生(外文):Ren-Hong You
論文名稱:一百兆瓦級超短脈衝雷射系統之寬頻能量放大器的建造
論文名稱(外文):Construction of Ultra-broadband Power Amplifiers of an 100-TW Ultra-short Pulse Laser System
指導教授:朱旭新林俊元林俊元引用關係
指導教授(外文):Hsu-hsin ChuJiunn-Yuan Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:啾頻脈衝放大放大器一百兆瓦
外文關鍵詞:chirp pulse amplification100 TWamplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
在2000年台大原分所強場超快實驗室已建造出一套十兆瓦飛秒雷射系統[1],並利用它進行電子加速器[2、3、4]、電漿非線性光學[5、6]及X-ray[7、8、9、10]雷射…等強場物理實驗。
為了更進一步研究發展,於2004年我們在國立中央大學開始建造一百兆瓦級超短脈衝雷射系統,期待它我們可以發展開創性新物理實驗,參與世界性競爭。
也為了充分發揮此套系統能有多功能使用,我們也同時開發出兩道中心波長800 nm及900 nm且尖峰功率皆達到20 TW的光路,而我負責的是800 nm 20 TW光路的放大器建造。
我們雷射系統的脈衝光源,是由倍頻Nd-YAG連續波雷射(532 nm)輸入5 W功率來激發Ti:Sapphire雷射震盪器所產生,藉由Kerr-lens鎖模方式產生發射率75 MHz能量7 nJ中心波長脈795 nm頻寬56 nm的脈衝。接著我們使用啾頻脈衝放大技術(Chirped Pulse Amplification)來提升脈衝能量:脈衝先經過除頻並由脈衝延展器(stretcher)將時寬拉開至190 ps,再送進三個能量放大器將脈衝能量提升,最後輸出為發射率10 Hz能量1 J中心波長815 nm頻寬19 nm的脈衝,這之中還伴隨幾個重要模組,如脈衝清潔器(pulse cleaner)、真空空間濾波器(vacuum spatial filter)以提升脈衝時間上噪訊對比及空間上光束截面品質。若以當時的輸出條件來預估,經過脈衝壓縮器(compressor)將脈衝壓縮至轉換極限可達50 fs,並損失50%能量後,尖峰功率為10TW。
本論文第一章緒論大致介紹高功率飛秒雷射的應用發展及我們為了要架設100 TW雷射系統的動機;要得到如此超短超高功率的脈衝,就要有脈衝光源及放大機制兩個步驟,因此將在第二章敘述雷射脈衝的產生原理,而第三章接著提到升能量所採用的啾頻脈衝放大技術,但放大器運作時會遇到的問題會在第四章說明,最後第五章將詳述我負責的模組設計及建造過程,第六章總結雷射系統最後輸出結果及未來改善的方向。
In the past three years we have constructed a high-quality 10-terawatt laser system at Institute of Atomic and Molecular Sciences, Academia Sinica, and utilized it to conduct pioneering experiments in high-field science.. For the next phase of development we are ready to boost the momentum and engage in world-wide competition by constructing a top-rated 100-TW laser at National Central University before the end of 2007. And for multi-application we also constructed two more beamline from the 100-TW laser system, their center wavelength at 800 nm and 900 nm respectively both peak power are 20TW. What is my major job is to construct the amplifier of 800 nm 20 TW beamline and this thesis records my efforts and accomplishments in these works.
目次

摘要
Abstract
1. 緒論

2. 雷射脈衝的產生
2.1 寬頻的活性介質
2.2 脈衝壓縮機制
2.3 色散補償

3. 啾頻脈衝放大機制
3.1脈衝啾頻
3.2 脈衝能量放大

4. 脈衝放大過程的問題
4.1 頻譜的偏移
4.2 Kerr非線性效應
4.3 自發射放大
4.4 熱的影響

5. 負責模組的建造
5.1 系統流程
5.2 第二級放大器(2nd stage amplifier)
5.2.1 模擬計算
5.2.2 架設過程及結果
5.3 真空空間濾波器(Vacuum Spatial Filter)
5.4 第三級放大器(3rd stage amplifier)

6. 結論與展望

參考文獻
參考文獻

[1]H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H.Lee, S. y. Chen, and J. Wang, “A versatile 10-TW laser system with robustpassive controls to achieve high stability and spatiotemporal quality,” Appl. Phys.B 79, 193–201 (2004).
[2]C.-T. Hsieh, C.-M. Huang, C.-L. Chang, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, “ Tomography of Injection and Acceleration of Monoenergetic Electronsin a Laser-Wakefield Accelerator, ” PRL 96, 095001 (2006).
[3]W.-T. Chen, T.-Y. Chien, C.-H. Lee, J.-Y. Lin, J.Wang, and S.-Y. Chen,“Optically Controlled Seeding of Raman Forward Scattering and Injection of Electronsin a Self-Modulated Laser-Wakefield Accelerator,”PRL VOLUME 92, NUMBER 7.
[4]T.-Y. Chien, C.-L. Chang, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen,“Spatially Localized Self-Injection of Electrons in a Self-Modulated Laser-Wakefield Accelerator by Using a Laser-Induced Transient Density Ramp,” PRL 94, 115003 (2005).
[5]C.-C. Kuo, C.-H. Pai, M.-W. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen,“Enhancement of Relativistic Harmonic Generation by an Optically Preformed Periodic PlasmaWaveguide,” PRL 98, 033901 (2007).
[6]C.-H. Pai, M.-W. Lin, L.-C. Ha, S.-T. Huang, Y.-C. Tsou, H.-H. Chu,3 J.-Y. Lin,“Backward Raman Amplification in a PlasmaWaveguide,” PRL 101, 065005 (2008).
[7]M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen,“Dramatic Enhancement of Optical-Field-Ionization Collisional-Excitation X-Ray Lasingby an Optically Preformed PlasmaWaveguide,” PRL 99, 063904 (2007).
[8]H.-H. Chu, H.-E. Tsai, M.-C. Chou, L.-S. Yang, J.-Y. Lin, C.-H. Lee, J. Wang, and S.-Y. Chen,“Collisional excitation soft x-ray laser pumped by optical field ionization in a cluster jet,”PHYSICAL REVIEW A 71, 061804sRd s2005d.
[9]M.-C. Chou, P.-H. Lin, T.-S. Hung, J.-Y. Lin, J. Wang, and S.-Y. Chen,“Experimental investigation of the parameter space for optical-field-ionization cluster-jet x-ray lasers,” PHYSICAL REVIEW A 74, 023804 2006.
[10]P.-H. Lin, M.-C. Chou, C.-A. Lin, H.-H. Chu, J.-Y. Lin, J. Wang, and S.-Y. Chen,“Optical-field-ionization collisional-excitation x-ray lasers with an optically preformed plasma waveguide,” PHYSICAL REVIEW A 76, 053817 2007.
[11]M. D. Perry et al., Opt. Lett., 24, 160–162 (1999).
[12]K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma,Opt. Lett., 23, 1468–1470 (1998).
[13]D. G. Lee, J. -H. Kim, K. -H. Hong, and C. H. Nam, Phys. Rev. Lett., 87,243902-1–243902-4 (2001).
[14]E. Esarey and M. Pilloff, Phys. Plasmas, 2, 1432–1436 (1995).
[15]B. E. Lemoff, C. P. J. Barty, and S. E. Harris, Opt. Lett., 19, 569–571 (1994).
[16]B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, Phys.Rev. Lett., 74, 1574–1577 (1995).
[17]B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, Science, 284, 1488 (1999).
[18]P. Chen and T. Tajima, Phys. Rev. Lett., 83, 256 (1999).
[19]K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and highaverage power Ti:sapphire laser system and its applications,” IEEE J. Sel. Top. Quantum Electron. 6, 658–675 (2000).
[20]M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, “100-Terawatt Titanium Sapphire Laser System,” Laser Physics 12, 368 (2002).
[21]M. Pittman, S. Ferr’e, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Ch’eriaux, “Design and characterization of a near-diffractionlimited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. Lett. 74, 529–535 (2002).
[22]D. M. Pennington et al., “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[23]Y. Kitagawa et al.,“Progress of fast ignitor studies and Petawatt laser construction at Osaka University,”Phys. Plasmas 9, 2202–2207 (2002).
[24]D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm. 56, 219–221 (1985).
[25]P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[26]D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42(1991).
[27]V. Magni, G. Cerullo, and S. De Silvestri, Opt. Commun. 101, 365(1993).
[28]J. H. Marburger. In J. H. Sanders and S. Stendholm, Eds., Progress in Quantum Electronics,volume 4, 1977, p. 35.
[29]S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov. Self focusing and self trapping of intense light beams in a nonlinear medium. Translation of Zhurnal Eksperimentalnoi I Teoreticheskoi Fizik, 23:1025–1033, 1966.
[30]S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov. Development of an optical waveguide in the propagation of light in a nonlinear medium. Translation of Zhurnal Eksperimentalnoi I Teoreticheskoi Fizik, 24:198–201, 1967.
[31]J. H. Marburger. In J. H. Sanders and S. Stendholm, Eds., Progress in Quantum Electronics, volume 4, 1977, p. 35
[32]W. Sellmeier, Annalen der Physik und Chemie 143, 271 (1871).
[33]K. Wynne, G. D. Reid, , and R. M. Hochstrasser, “Regenerative amplification of 30-fs pulses in Ti:sapphire at 5 kHz,” Opt. Lett. 19, 895 (1994).
[34]R. Szipöcs et al., “Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers”, Opt. Lett. 19 (3), 201 (1994)
[35]R. Szipöcs and A. Koházi-Kis, “Theory and design of chirped dielectric mirrors”, Appl. Phys. B 65, 115 (1997)
[36]F. X. Kärtner et al., “Design and fabrication of double-chirped mirrors”, Opt. Lett. 22 (11), 831 (1997)
[37]E. B. Treacy, “Compression of picosecond light sources,” Phys. Lett. A., vol. 28, pp. 34-35, 1968.
[38]E. B. Treacy, “Optical pulse compression with diffractiona gratings,”IEEE J. Quantum Electron. QE-5, 454 (1969)
[39]D. Strickland and G. Mourou, “Compression of amplified chirped opticalpulses,” Opt. Comm. 56, 219–221 (1985).
[40]P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generationof ultrahigh peak power pulses by chirped pulse amplification,”IEEE J. Quantum Electron. 24, 398–403 (1988).
[41]O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003 (1984)
[42]C. Le Blanc, G. Grillon, J. P. Chambaret, A. Migus, and A. Antonetti,“Compact and efficient multipass Ti:sapphire system for femtosecond chirped-pulse amplification at the terawatt level,” OPTICS LETTERS / Vol. 18, No. 2 / January 15, 1993
[43]Ming Li and George N. Gibson,“Flexible aberration-free multipass amplifier and compressor for ultrashort-pulse amplification,” J. Opt. Soc. Am. B/ Vol. 15, No. 9/September 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top