跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/05 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:甘健佑
研究生(外文):Jian-You Gan
論文名稱:RFeTiZrCrBC(R=Nd、Pr及Mischmetal)多元塊狀永磁磁性及相變化之研究
論文名稱(外文):Magnetic properties and phase evolution of directly quenched RFeTiZrCrBC (R = Nd、Pr and Mischmetal) bulk magnets
指導教授:張文成張文成引用關係
指導教授(外文):Wen-Cheng Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:140
中文關鍵詞:合金棒材稀土永磁塊狀永磁
外文關鍵詞:Grain refinementBulk hard magnetsNd2Fe14B
相關次數:
  • 被引用被引用:2
  • 點閱點閱:498
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
摘要
為簡化目前商用磁石繁複的製備程序,本實驗選用銅模鑄造法製作直徑為1.1 mm、長度為16 mm之多元合金棒材,研究影響其磁性變因及提高磁性之方法。首先,以合金成份Nd9.5Febal.Ti2.5Zr0.5B15-xCx (x = 0-1)及Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5(x = 0-3)為出發點,冀望透過C及Cr元素之添加,達到提升磁性之目的。結果顯示C及Cr元素之適量添加,皆具有細化晶粒之效用,並使晶粒間交換藕合作用提升,進而提高其磁性。最佳之磁能積出現於成分Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5,其Br=5.9 kG、iHc=8.2 kOe及(BH)max=7.2 MGOe。
其次,探討改變稀土元素對於RyFebal.Ti2.5Zr0.5Cr1B14.5C0.5 (R=Nd、Pr及 Mischmetals;y=8-10.5)合金棒材中之影響,並改變B含量找出最佳之成分配比。結果顯示,隨稀土含量增加,其軟磁相及非晶相遞減,而硬磁相隨之遞增,使iHc提升而σ12kOe下降;隨B含量增加,晶粒細化,至高B含量下出現非晶相,使iHc提升而Br降低。另外,Mm(B)9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5磁性與R=Pr及Nd合金棒材不相上下,加上成分所含之混合稀土金屬(Mischmetal)量低且價格低廉,可達到本研究希望之高性能低成本之目標。
最後,比較Nd9.5Febal.Ti3B15及Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材於不同直徑(0.7 mm - 1.5 mm)下之差異。此兩個成分隨合金棒材尺寸提升,晶粒大小隨之粗化,致使晶粒間之交換藕合作用變差,導致磁性下降。但Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材組成元素較多,進而造成晶粒之細化,使得其隨棒材直徑增加,磁性衰減較為緩慢,於棒材直徑1.3 mm下仍擁有較佳之磁特性。
(註: Mm(B)之主要成份為73.13 wt% 的Nd及26.87 wt%的Pr)
Abstract
In order to simplify the manufacturing process for making isotropic magnet, in this study, we adopt the copper mold casting method to fabricate permanent magnetic alloy rods with a diameter of 1.1 mm and a length of 16 mm. At first, for Nd9.5Febal.Ti2.5Zr0.5B15-xCx (x=0-1) and Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5(x=0-3) alloys, C and Cr substitution for B and Fe, respectively, is helpful to refine the microstructure, leading to the improvement of the exchange coupling effect, and consequently, the magnetic properties are enhanced. Among above two series rods, the optimal magnetic properties of Br=5.9 kG, iHc=8.2 kOe and (BH)max=7.2 MGOe could be achieved in Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5 alloy rod.
On the other hand, for Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5 (x=12.5-19.5) alloys, with increasing B content, the iHc is increased and Br is decreased, due to the grain refinement, but magnetic properties is deteriorated due to the appearance of amorphous phase for higher B content, i.e. x= 17.5-19.5. Besides, for RyFebal.Ti2.5Zr0.5Cr1B14.5C0.5 (R=Nd, Pr, and various Mischmetals; y=8-10.5) alloys, the iHc is increased and σ12kOe is decreased with the increase of the content of rare earth element, arisen from the increase of the volume fraction of magnetically hard 2:14:1 phase. Furthermore, low cost rare-earth, Mischmetals (Mm), were adopted as the main rare-earth elements, and the attractive magnetic properties of Br=5.7 kG, iHc=10.3 kOe and (BH)max=6.9 MGOe could be obtained for Mm(B)9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5 alloy rod, where Mm(B) mainly comprises 73.13 wt% Nd and 26.87 wt% Pr element. They can not only exhibit excellent magnetic performance but also reduce cost of the material effectively.
Finally, comparing the magnetic properties and microstructure of Nd9.5Febal.Ti3B15 and Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5 alloys with various diameters (0.7-1.5 mm), the magnetic properties of both series alloys are decreased with the increase of the diameter of rod, and the latter alloy, consisting of more elements, can keep attractive magnetic properties up to larger diameter of 1.3 mm, due to the grain refinement by multi-element effect.
目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅳ
目錄 Ⅴ
表目錄 Ⅷ
圖目錄 XI
第一章 緒論 1
1-1 磁性材料簡介 1
1-2 稀土永磁材料簡介 7
1-3 RFeB複合奈米晶永磁材料 12
1-4 R2Fe14B合金之顯微結構和基本特性 19
1-5 磁性棒材之發展與文獻簡介 23
1-6 研究動機與目的 28
第二章 理論基礎 30
2-1 磁滯曲線 30
2-2基本磁學理論 32
2-2-1磁性的來源 32
2-2-2磁性的分類 33
2-2-3磁的交互作用與磁異向性 36
2-2-4磁石之矯頑機制簡介 38
2-3消磁場 42
2-4交換藕合作用 45
第三章 實驗方法 51
3-1 實驗流程 51
3-2 棒材製備 52
3-2-1合金熔煉 52
3-2-2銅模鑄造法 53
3-2-3孔徑選擇 54
3-3量測分析 56
3-4合金成分 59
第四章 實驗結果與討論 62
4-1 C元素的添加對Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材磁性、相變化及顯微結構之影響 62
4-2 Cr元素的添加對Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材磁性、相變化及顯微結構之影響 72
4-3不同稀土元素及其含量變化對RyFebal.Ti2.5Zr0.5Cr1B14.5C0.5 (R=Nd 、Pr及Mischmetal)合金棒材之磁性及相變之影響 82
4-3-1 Nd含量的變化對NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材磁
性及相變化之影響 83
4-3-2 Pr含量的變化對PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材磁性
及相變化之影響 90
4-3-3 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材磁性及相變化之研究
(R=Mischmetal、Pr及Nd) 97
4-3-4改變稀土元素及其含量RyFebal.Ti2.5Zr0.5Cr1B14.5C0.5(R=Nd、
Pr及Mischmetal)合金棒材之綜合分析 104
4-4 B含量變化對Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材磁性及相變化之影響 105
4-5不同直徑之Nd9.5Febal.Ti3B15及Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金
棒材磁性、相變化及顯微結構之比較 113
第五章 結論 127
參考文獻 132


























表目錄
表1-1-1 永磁材料的成分與性能 6
表1-2-1 R-Co系磁石的發展過程 8
表1-2-2 R-Fe-B系磁石的發展過程 10
表1-3-1 Fe3B/Nd2Fe14B型複合奈米晶永磁材料之磁性一覽表 15
表1-3-2 α-Fe/Nd2Fe14B型複合奈米晶永磁材料之磁性一覽表 18
表1-4-1 R2Fe14B永磁相晶格常數與異方性場 19
表1-4-2 R2Fe14B相之自旋再取向溫度TSR(K)與居里溫度TC(K) 23
表1-5-1 磁性棒材發展過程 24
表3-2-1 不同直徑(d = 0.9、1.0及1.1 mm) Nd9.5Febal.Ti2.5Zr0.5B15合
金棒材之磁特性表 55
表3-4-1 合金成份表 59
表3-4-2 合金成份表 59
表3-4-3 合金成份表 60
表3-4-4 Mischmetal成份表 60
表3-4-5 合金成份表 61
表3-4-6 合金成份表 61
表4-1-1 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之磁性、2:14:1相之居
禮溫度與溫度係數一覽表 65
表4-1-2 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之磁性相一覽表 68
表4-1-3 Nd9.5Febal.Ti2.5Zr0.5B15-xCx (x = 0、0.5及1)合金棒材之晶粒
分佈尺寸 69
表4-2-1 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之磁性、2:14:1相之
居禮溫度與溫度係數一覽表 75
表4-2-2 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之磁性相一覽表 78
表4-2-3 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5 (x = 0、1、2及3)合金棒材
之晶粒分佈尺寸 79
表4-2-4 Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之成分分析表 80
表4-3-1 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性值、2:14:1相
之居禮溫度與溫度係數一覽表 85
表4-3-2 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性相一覽表 88
表4-3-3 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性值、2:14:1相之
居禮溫度與溫度係數一覽表 92
表4-3-4 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性相一覽表 95
表4-3-5 三種不同混合稀土金屬(Mischmetal)之主要成份表 98
表4-3-6 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性值、2:14:1相之
居禮溫度與溫度係數一覽表 99
表4-3-7 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性相一覽表 102
表4-4-1 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之磁性值、2:14:1相之
居禮溫度與溫度係數一覽表 108
表4-4-2 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之磁性相一覽表 111
表4-5-1 Nd9.5Febal.Ti3B15合金棒材之磁性值、2:14:1相之居禮溫度與溫度係數一覽表 117
表4-5-2 Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性值、2:14:1相之居禮溫度與溫度係數一覽表 117
表4-5-3 (a) Nd9.5Febal.Ti3B15及(b) Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒
材之磁性相一覽表 121
表4-5-4 Nd9.5Febal.Ti3B15(d = 0.7 mm、0.9 mm及1.1 mm) 合金棒材之晶粒分佈尺寸 122
表4-5-5 直徑1.1 mm (四元及七元)合金棒材之晶粒分佈尺寸 124
表5-1 合金棒材之綜合比較 130





































圖目錄
圖1-1-1 磁性材料應用的領域及其應用原理簡要 4
圖1-1-2 磁性材料的分類 5
圖1-1-3 永久磁石材料磁能積之發展趨勢 5
圖1-2-1 稀土永磁材料的主要分類 7
圖1-4-1 R2Fe14B晶體結構圖 20
圖1-4-2 (a),(b) R2Fe14B相磁化強度隨溫度的變化情況
(c) R2Fe14B相異向性場隨溫度的變化情況 21
圖1-5-1 磁性塊材發展過程簡介 23
圖2-1-1 磁滯曲線圖 30
圖2-2-1 磁性體種類的主要分類 35
圖2-2-2 磁的交互作用 36
圖2-2-3 三種矯頑機制的顯微結構示意圖 38
圖2-2-4 (a)反向磁區孕核控制型及
(b)磁區壁栓固控制型之磁滯迴路 41
圖2-3-1 永久磁鐵之消磁場 42
圖2-3-2 各種簡單形狀之消磁因子對長徑比作圖 43
圖2-3-3 Pr9.5Febal.Ti2.5Zr0.5B15棒材之消磁場修正曲線 44
圖2-4-1 交換藕合效應的一維微觀結構計算模型 48
圖2-4-2 δM為負值,相鄰磁矩有反向排列的趨勢 50
圖2-4-3 δM為正值,即磁性晶粒間有交換耦合的現象 50
圖3-1-1 實驗流程 51
圖3-2-1 電弧熔煉爐裝置檢圖 52
圖3-2-2 合金棒材製備程序 54
圖3-2-3 不同直徑之直接冷卻合金棒材外貌 55
圖3-3-1 振動磁量儀(Vibrating sample magnetometer)簡圖 56
圖3-3-2 熱重分析計(TMA)之基本構造圖 57
圖4-1-1 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之第二象限磁滯曲線圖
. 64
圖4-1-2 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之磁性趨勢圖 65
圖4-1-3 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之XRD圖 67
圖4-1-4 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之TMA圖. 68
圖4-1-5 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之TEM圖 (a)x=0、
(b)x=0.5及(c)x=1 70
圖4-1-6 Nd9.5Febal.Ti2.5Zr0.5B15-xCx合金棒材之δM-H圖 71
圖4-2-1 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之第二象限磁滯曲線
圖 74
圖4-2-2 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之磁性趨勢圖 75
圖4-2-3 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之XRD圖 77
圖4-2-4 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之TMA圖. 78
圖4-2-5 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之TEM圖 (a)x=0、
(b)x=1、(c)x=2及(d)x=3 80
圖4-2-6 Nd9.5Febal.Ti2.5Zr0.5CrxB14.5C0.5合金棒材之δM-H圖 81
圖4-3-1 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁滯曲線圖 84
圖4-3-2 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性趨勢圖 85
圖4-3-3 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之XRD圖 87
圖4-3-4 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之TMA圖. 88
圖4-3-5 NdyFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之δM-H圖 89
圖4-3-6 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁滯曲線圖 91
圖4-3-7 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性趨勢圖 92
圖4-3-8 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之XRD圖 94
圖4-3-9 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之TMA圖. 95
圖4-3-10 PryFebal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之δM-H圖. 96
圖4-3-11 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之第二象限磁滯曲線
圖 98
圖4-3-12 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之XRD圖. 101
圖4-3-13 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之TMA圖. 102
圖4-3-14 R9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之δM-H圖. 103
圖4-4-1 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之第二象限磁滯曲線
圖 107
圖4-4-2 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之磁性趨勢圖 108
圖4-4-3 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之XRD圖 110
圖4-4-4 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之TMA圖. 111
圖4-4-5 Nd9.5Febal.Ti2.5Zr0.5Cr1BxC0.5合金棒材之δM-H圖 112
圖4-5-1 (a) Nd9.5Febal.Ti3B15及(b) Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之第二象限磁滯曲線圖 116
圖4-5-2 Nd9.5Febal.Ti3B15及Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之磁性趨勢圖 118
圖4-5-3 (a) Nd9.5Febal.Ti3B15及(b) Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之XRD圖 120
圖4-5-4 (a) Nd9.5Febal.Ti3B15及(b) Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之TMA圖. 121
圖4-5-5 Nd9.5Febal.Ti3B15合金棒材之TEM圖 (a)0.7 mm、(b)0.9 mm、及(c)1.1 mm 123
圖4-5-6 (a) Nd9.5Febal.Ti3B15及(b) Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材(1.1 mm)之TEM圖 124
圖4-5-7 (a) Nd9.5Febal.Ti3B15及(b) Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5合金棒材之δM-H圖 126
參考文獻
[1]何開元。精密合金材料科學。北京:冶金工業出版社, P.85, 1991。
[2]J. Hall, A. Fenocchi and Mr. Eternad, 13th Int. Workshop on RE Magnets & their Applications, 329 (1994).
[3]W. M. Hubbard, E. Adams and J. V. Gilfrich, J. Appl. Phys. 31, 368 (1960).
[4]G. Hoffer and K. Strnat, IEEE Trans. Magn. 2, 487(1996).
[5]K. J. Strnat, Cobalt 36, 133 (1967).
[6]K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38, 1001 (1967).
[7]E. A. Nesbitt et al., Appl. Phys. Lett. 12, 361 (1968).
[8]Velge, W. A. J. T. et al., J. Appl. Phys. 39, 336 (1968).
[9]Buschow, K. H. J. et al., Philips Tech Rew 29, 1717 (1968).
[10]Das, D. K., IEEE. Trans. On magn., MAG-5, No. 3, 214 (1969).
[11]Benz M. G. et al., Cobalt No. 50, 11 (1971).
[12]D. L. Martin et al., Cobalt, No. 50, 11 (1971).
[13]A. C. Epmopehko et al., IEEE Trans. Magn. 17, 499 (1973).
[14]T. Ojima et al., J. Appl. Phys. 4, 671 (1977).
[15] J. J. Croat, Appl. Phys. Lett., 37, 1096 (1980).
[16] J. J. Croat, J.Appl. Phys., 52, 2509 (1981).
[17] J. J. Croat, Appl. Phys. Lett., 39, 357 (1981).
[18] N. C. Koon and B. N. Das, Appl. Phys. Lett., 39, 840 (1981).
[19] J. J. Becker, J. Appl. Phys., 55, 2067 (1984).
[20] G. C. Hadjipanayis, R. C. Hazelton, and K. R. Lawless, J. Appl. Phys., 55, 2073 (1984).
[21] H. H. Stadelmaier and H. K. Park, Z. Metallkde, 72, 417 (1981).
[22] J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys., 55, 2078 (1984).
[23] D. J. Sellmyer, A. Ahmed, G. Muench, and G. Hadjipanayis, J. Appl. Phys., 55, 2088 (1984).
[24]A. E. Clark et al., Phys. Lett.A 42, 160 (1972).
[25]A. E. Clark, Appl. Phys. Lett. 23, 642 (1973).
[26]J. M. D. Coey and Hong Sun, J. Magn. Magn. Mater. 97, 251 (1990).
[27]日本產經新聞四月十六日報, 1991。
[28]Y. Kaneko, R&D Section of NEOMAX Div., Sumitomo Special Metals Co., Ltd., “Development of Super High Performance Magnet Having 444 kJ/m3 (55.8MGOe)”,日本應用磁氣學會誌,vol. 24, No. 1, 13 (2000).
[29]W. Rodewald, B. Wall, M. Katter, and K. Uestuener, IEEE Trans. Magn. 39, 2932 (2003).
[30] A. Sakamoto, T. Hidaka, C. Ishizaka, N. Uchida, and A. Fukuno, Trans. Mater. Res. Soc. Jap. 29, 1719 (2004).
[31] Yutaka Matsuura, J. Magn. Magn. Mater. 303, 344 (2006).
[32]E. C. Stoner, E. P. Wohlfarther, Phil. Trans. Roy. Soc. A-240, 599 (1948).
[33]周壽增, 稀土永磁材料及其應用, 北京機械工業出版社, P.111, 1990。
[34]A. Manaf, R. A. Buckley, H. A. Davis and M. Leonowicz, J. Magn. Magn. Mater., 101, 360 (1991).
[35]J. Bauer, M. Seeger, A. Zern and H. Kronmüller, J. Appl. Phys., 80, 1667 (1996).
[36]R. Coehoorn, D.B. DeMooij, and C. DeWaard, J. Magn. Magn. Mater., 80, 101, (1989).
[37]H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn., 29, 2863 (1993).
[38]R. Coehoorn, D. B. Mooij, J. P. W. Duchateau, and K. H. Buschow, J. J. de Phys., 49, C8, 669 (1988).
[39]E. F. Kneller, and R. Hawig, IEEE Trans. Magn., 27, 3588 (1991).
[40]Z. H. Cheng, B. G. Shen, and F. W. Wang, Phys. Rev. B, 51, 12433 (1995).
[41]Z. H. Cheng, B. G. Shen, and M. X. Mao, and J. J. Sun, Phys. Rev. B, 52, 9247 (1995).
[42]B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater., 96, 335, (1991).
[43]B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater., 89, 195, (1990).
[44]S. Hirosawa, H. Kanekiyo, and M. Uehara, J. Αppl. Phys. 73, 6488 (1993).
[45]S. Hirosawa, αnd H. Kanekiyo, Mater. Sci. Eng. Α 217/218, 367(1996).
[46]H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn. 29, 2863 (1993).
[47]H. Kanekiyo, M. Uehara, and S. Hirosawa, Mater. Sci. Eng. Α 181/182, 868 (1994).
[48]K. Kajiwara, K. Hono, S. Hirosawa, Mater. Trans. JIM 42, 1858 (2001).
[49]D. H. Ping, K. Hono, and Hirosawa, J. Αppl. Phys. 83, 7769 (1998).
[50]D. H. Ping, K. Hono, H. Kanekiyo, and S. Hirosawa, IEEE Trans. Magn. 35, 3262 (1999).
[51]T. Zhao, Q. F. Xiao, Z. D. Zhang, M. Dahlgren, R. Grössinger, K. H. J. Buschow, and F. R. de Boer, Αppl. Phys. Lett. 75, 2298 (1999).
[52]B. D. Cullity, Introduction to magnetic materials, Addison-Wesley Publishing Company, Inc., 207 (1972).
[53]T. Schrefl, J. Fidler, and H. Kronmüller, Phys. Rev. B 49, 6100 (1994).
[54]A. Manaf, R. A. Buckley, and H. A. Davis, J. Magn. Magn. Mater. 128, 302, (1993).
[55]G. C. Hadjipanayis and L. Withanawasam, IEEE Trans. Magn. 31, 3596 (1995).
[56]I. Panagiotopoulos and G. C. Hadjipanayis, J. Appl. Phys., 79, 4827 (1996).
[57]Y. Q. Wu, D. H. Ping, K. Hono, M. Hamano, and A. Inoue, J. Αppl. Phys. 87, 8658 (2000).
[58]X. Y. Xiong, Y. Q. Wu, and K. Hono, Proceeding on the 17thInternational Workshop on Rare Earth Magnets and Their Applications, 796 (2002).
[59]W. C. Chang, and D. M. Hsing, J. Αppl. Phys. 79, 4843 (1996).
[60]W. C. Chang, D. M. Hsing, B. M. Ma, and C. O. Bounds, IEEE Trans. Magn. 32, 4425(1996).
[61]W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Magn. Magn. Mater. 167, 65 (1997).
[62]W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Αppl. Phys. 81, 4453(1997).
[63]W. C. Chang, S. H. Wu, B. M. Ma, C. O. Bounds, and S. Y. Yao, J. Αppl. Phys. 83, 2147 (1998).
[64]W. C. Chang, D. Y. Chiou, S. H. Wu, B. M. Ma, and C. O. Bounds, Αppl. Phys. Lett. 72, 121 (1998).
[65]W. C. Chang, S. H. Wang, S. J. Chang, and M. Y. Tsai, IEEE Trans. Magn. 35, 3265 (1999).
[66]W. C. Chang, S. H. Wang, S. J. Chang, and Q. Chen, IEEE Trans. Magn. 36, 3312 (2000).
[67]W. C. Chang, S. H. Wang, S. J. Chang, and H. W. Chang, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 605 (2000).
[68]W. C. Chang, I. A. Chen, S. J. Chang, and C. H. Yu, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 613 (2000).
[69]V. Neu and L. Schultz, J. Αppl. Phys. 90, 1540 (2001).
[70]X.Y. Zhang, Y. Guan, and J. W. Zhang, Αppl. Phys. Lett. 80, 1966 (2002).
[71]L.H. Lewis, and V. Panchanathan, J. Αppl. Phys. 85, 4883 (1999).
[72]X.K. Sun, J. Zhang, Y.L. Chu, W. Liu, B.Z. Cui, αnd Z.D. Zhang, Αppl. Phys. Lett. 74, 1740 (1999).
[73]J. Bauer, M. Seeger, Α. Zern, and H. Kronmüller, J. Αppl. Phys. 80, 1667 (1996).
[74] J. F. Herbst, J. J. Croat, F. E. Pinkerson, and W. B. Yelon, Phys. Rev. B, 29, 4173 (1984).
[75]C. Abache and H. Oesterreicher, J. Αppl. Phys. 57, 4112 (1985).
[76]S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, J. Αppl. Phys. 59, 873 (1986).
[77]E. B. Boltich, E. Oswald, M. Q. Huang, S. Hirosawa, W. E. Wallace, and E. Burzo, J. Αppl. Phys. 57, 4106 (1985).
[78]W. Klement, R. H. Willens and P. Duwex, Nature, 187, 869(1960).
[79]A. Inoue, Y. Shinohara and J.S. Gook, Mater. Trans. JIM, 36, 1427(1995).
[80]A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, Mater. Trans. JIM 37,99(1996).
[81]A. Inoue, T. Zhang, A. Takeuchi, Mater. Trans. JIM 37,1731(1996).
[82]W. Zhang and A. Inoue, J. Appl. Phys. 91, 8834 (2002).
[83]A. Inoue, T. Zhang and A. Takeuchi, IEEE Trans. Magn. 33, 3814(1997).
[84]A Peker and W.L. Johnson, Appl. Phys. Lett., 63, 2342(1999).
[85]P. Duwez and S. C. H. Lin, J. Appl. Phys. 38, 4096(1967).
[86]R. Hasegawa, Phys. Lett. 38, 5(1972).
[87]M. Nose and T. Masumoro, Sci. Rep. Res. Inst. Tohoku Univ. 28, 232(1980).
[88]A. Inoue, A. Takeuchi and B. Shen, Mater. Trans. JIM, 42, 970(2001).
[89]W. Zhang and A. Inoue, Appl. Phys. Letters. 80, 1610(2002).
[90]Yi Long, Wei Zhang, Xinmin Wang, Akihisa Inoue, J. Appl. Phys. 91, 5227(2002).
[91]P.C. Pawlik and H.A. Davies, Scripta Mater. 49, 755(2003).
[92]M. Marinescu, P.C. Pawlik, H.A. Davies and H. Chiriac, J. Optoelectron. Adv. Mater. 6(2), 603(2004).
[93]M. Marinescu, H. Chiriac, M. Grigoras, J. Magn. Magn. Mater. 290-291, 1267(2005).
[94]P. Pawlik, K. Pawlik, H.A. Davies, W. Kaszuwara, J.J. Wysłocki, N. Harrison, I. Toddb, J. Alloys and Compds. 423,99 (2006).
[95]J. Zhang, K. Y. Lim, Y. P. Feng and Y. Li, Scripta Mater. 56, 943(2007).
[96]Xiaohua Tan, Hui Xu, Qin Bai, and Yuanda Dong, Applied physics letters 91, 252501 (2007).
[97]H.W. Chang, M.F. Shih, C.W. Chang, C.C. Hsieh and Y.T. Cheng, Scripta materialia 59, 227 (2008).
[98]H.W. Chang, M.F. Shih, C.W. Chang, C.C. Hsieh and Y.K. Fang, Journal of applied physics, 103, 07E105 (2008).
[99]H.W. Chang, Y. T. Cheng, C.W. Chang, C.C. Hsieh and Z. H. Guo, Journal of applied physics, 105, 07A742 (2009).
[100]A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater. Trans, JIM, 32, 609 (1991).
[101]A. Inoue, A. Kita, T. Zhang, T. Masumoto, Mater. Trans, JIM, 30, 722(1989).
[102]A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans, JIM, 33, 937(1992).
[103]T. Mizushima, S. Yoshida and A. Inoue, J. Magn. Soc. Jpn, 22, 1085(1998).
[104]A. Inoue, T. Zhang, T. Ioti and A.Takeuchi, “New Fe-Co-Ni-Zr-B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties, ” Materials Transactions, 38, 359(1997).
[105]Lin, Chin, and Tien Appl. Phys. Lett. 86, 162501-2 (2005).
[106]A. Inoue, T. Zhang and A. Takeuchi, IEEE Trans. Magn. 33, 3814(1997).
[107]Rintaro Ishii, Toshio Miyoshi, Hirokazu Kanekiyo and Satoshi Hirosawa, J. Magn. Magn. Mater. 312, 410 (2007).
[108]H. W. Chang, C. H. Chiu, C. W. Chang, W. C. Chang, Y. D. Yao, A. C. Sun, J. Alloys and Compds. 402, 269(2005).
[109]S. Legvold, “Ferromagnetic Materials’’ edited by E. P. Wohlfarth 1, 190(1980).
[110]J. J. Becker, IEEE Trans. Magn. 12, 965 (1976).
[111]G. Hilscher, R. Grossinger, S. Heisz, H. Sassik, and G. Wiesinger, J.Magn. Magn. Mater. 54, 577 (1986).
[112]R. Ramesh and G. Thomas, Mater. Sci. & Eng. B3, 435 (1989).
[113]K. D. Durst and H. Kronmuller, Proc. of 8th Int. Workshop on RE Magnets, 727 (1985).
[114]J. D. Livingston, “Soft and Hard Magnetic Materials with Applications”, (Edited by J. A. Salsgiver) 72 (1986).
[115]P. Gaunt, Phil. Mag. B48, 261 (1983).
[116]F. E. Pinkerton, and C. D. Fuerst, J. Appl. Phys. 69, 5817 (1991).
[117]F. E. Pinkerton, J. Appl. Phys. 63, 5427 (1988).
[118]F. E. Pinkerton, and C. D. Fuerst, J. Appl. Phys. 67, 4753 (1990).
[119]G.Hilsccheer, R.Grossinger, S. Heisz, H. Sassik, and G.Weisinger, J. Magn. Magn. Mater. 84, 577 (1990).
[120]陳士堃, 磁性技術手冊, P.21, 2002。
[121]E. F. Kneller, R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
[122]O. Henkel, Phys. Stat. Sol. 7, 919 (1964).
[123]E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).
[124]P. E. Kelly, K. O’Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. 25, 388 (1989).
[125]D. J. Branagan, R. W.McCallum, Journal of alloys and Compounds 218 (1995) 143-148.
[126]S. Hirosawa, H. Kanekiyo, T. Miyoshi, J. Mang. Mang. Mang. 281, 58 (2004).
[127]W. C. Chang, J. K. Chang, H. W. Chang, and B. M. Ma, J. Appl.
phys. 91, 8171 (2002).
[128]M. J. Kramer, C. P. Li, K. W. Dennis, R. W. McCallum, C. H. Sellers, D. J. Branagan, and J. E. Shield, J. Appl. Phys. 81, 4459 (1997).
[129]D. Nagahama, T. Ohkubo, T. Miyoshi, S. Hirosawa, K. Hono, Acta Mater. 54 (2006) 4871.
[130]W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Appl. Phys. 81, 4453 (1997).
[131]B. D. Cullity, Elements of x-ray diffraction, Addison-Wesley Publishing Company, Inc., 281 (1978).
[132]C. H. Chiu, H. W. Chang, C. W. Chang, and W. C. Chang, IEEE Trans. Magn. 41, 3769 (2005).
[133]Z. Chen, B. R. Smith, B.-M. Ma, M.-Q. Huang, Y.-Q. Wu, and M. J. Kramer, IEEE Trans. Magn. 39, 2938 (2003).
[134]鄭裕德,多元置換對直接冷卻RFeTiMB合金棒材之相變化及磁性之影響,國立中正大學碩士論文 (2008)。
[135]張文成, 磁性技術手冊, P.54, 2002。
[136]B. D. Cullity, “Introduction to Magnetic Materials”, 58 (1972).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top