跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許庭源
研究生(外文):Ting-yuan Hsu
論文名稱:探討硬脆性材料之延性切削加工機制
論文名稱(外文):The Study on the Ductile Machining Mechanism of Brittle Materials
指導教授:張怡玲
指導教授(外文):I-Ling Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:表面應力裂縫延性切削塑性區脆性材料
外文關鍵詞:ductile cuttingcrackbrittle materialsurface stressplastic zone
相關次數:
  • 被引用被引用:12
  • 點閱點閱:2304
  • 評分評分:
  • 下載下載:190
  • 收藏至我的研究室書目清單書目收藏:0
硬脆性材料如陶瓷、玻璃及單晶矽等,已被廣泛應用於光電及半導體產業,但硬脆性材料在加工時容易產生裂縫或缺陷,以現今半導體產業中相當重要的矽晶圓為例,一般以磨削或車削方式進行表面加工以達到所需之表面平整性,其中磨削方式耗費時間較長,而車削方式的加工速率則取決於切削厚度。硬脆性材料存在一臨界切削厚度,當切削厚度小於此臨界值則產生延性切削,可得到較平整的加工表面,因此若能對硬脆性材料之延性切削機制有進一步的瞭解,則可有效改善加工方式。
本研究主要以有限元素法探討硬脆性材料於臨界切削厚度之下所產生的延性切削現象。在考慮Mode I 及Mode II的破壞模式,對單一裂縫模型進行模擬時,在相同的施力條件下,由結果發現若裂縫非常靠近表面時,裂縫尖端之應力值會受到表面應力的影響而重新分佈,造成裂縫尖端塑性區變大,因此使得硬脆性材料的移除方式從脆性轉換成延性模式。而在切削模型模擬結果方面,可觀察到改變刀刃半徑或刀具前傾角對裂縫尖端之應力強度因子與塑性區會造成較大的變化,表示此兩種刀具參數會對材料的移除模式有所影響,但刀具之餘隙角大小對於材料的移除機制幾乎不會造成影響。
Brittle materials, such as ceramics, glass, and single crystal silicon, have been widely applied in the electro-optic as well as the semiconductor industry. However, brittle materials are difficult to process the surfaces and susceptible to cracks or flaws during the process. In general, the grinding or turning are commonly adopted to achieve surface finish requirement. The grinding process takes longer time while the processing speed of turning depends on the cutting depth. It is reported experimentally that there exists a critical cutting depth, below which ductile cutting dominates the process for brittle materials and smooth surface could be obtained. Hence, it is crucial to understand the underlying mechanism for the ductile cutting of brittle materials, so that the manufacturing process could be improved effectively.
Our research adopted finite element method to analyze the fracture behavior of brittle material in order to explain the brittle cutting mechanism. First, simple fracture Mode I and II loadings are applied on a single side crack model separately. It is observed that as the crack gets closer to the surface, the concentrated stress at the crack tip will be redistributed due to the surface stress, which induces a larger plastic zone in the front of the crack tip. Therefore, the removal mode of the brittle material transits from the brittle into ductile mode. Furthermore, a full cutting model with tool is simulated with various manufacturing parameters. It is learned that the changes in tool edge radius and rake angle would affect the crack tip stress intensity factor and cause a larger plastic zone. However, the tool clearance angle will not have any influence on the material removal mechanism.
誌謝 IV
摘要 V
Abstract VI
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 實驗方面 3
1.2.2 數值模擬方面 5
1.3 研究動機與目的 7
1.4 本文架構 7
第二章 硬脆性材料之切削加工概述 11
2.1 切削加工簡介 11
2.2 切屑的型態 13
2.3 切削力學 15
2.4 硬脆性材料 17
2.5 延性切削加工 17
第三章 基本理論 24
3.1 線彈性破壞力學 24
3.1.1 破壞模式 24
3.1.2 應力強度因子與J積分 25
3.2 有限元素法概述 25
3.3 ABAQUS簡介 27
第四章 有限元素裂縫模型 31
4.1 裂縫模型之模擬方法 31
4.1.1 收斂性測試 32
4.1.2 程式驗證 33
4.2 模擬結果 35
4.2.1 von Mises應力與塑性區 35
4.2.2 應力強度因子 36
第五章 有限元素切削模型 54
5.1 切削模型之模擬方法 54
5.2 模擬結果 55
5.2.1 切削力與下推力 55
5.2.2 刀刃半徑 56
5.2.3 刀具角度 58
第六章 結論與未來展望 76
6.1 結論 76
6.2 未來展望 77
參考文獻 79
[1]Z. C. Li, Z. J. Pei and G. R. Fisher, “Simultaneous Double Side Grinding of Silicon Wafers: a Literature Review,” International Journal of Machine Tools & Manufacture, Vol. 46, pp.1449–1458, 2006.
[2]K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks and K. Lindsey, “Single-Point Diamond Machining of Glasses,” Proceedings of the Royal Society of London, A426, pp.19-30, 1989.
[3]M. Yoshino, T. Aoki, T. Shirakashi and R. Komanduri, “Some Experiments on the Scratching of Silicon: In situ Scratching inside an SEM and Scratching under High External Hydrostatic Pressures,” International Journal of Mechanical Sciences, Vol. 43, pp.335-347, 2001.
[4]K. Liu and X. P. Li, “Ductile Cutting of Tungsten Carbide,” Journal of Materials Processing Technology, Vol. 113, pp.348-354, 2001.
[5]T. Shibata, S. Fujii, E. Makino and M. Ikeda, “Ductile-Regime Turning Mechanism of Single-Crystal Silicon,” Precision Engineering, Vol. 18, pp. 129-137, 1996.
[6]C. L. Chao, K. J. Ma, D. S. Liu, C. Y. Bai and T.L. Shy, “Ductile Behaviour in Single-Point Diamond-Turning of Single-Crystal Silicon,” Journal of Materials Processing Technology, Vol. 127, pp.187–190, 2002.
[7]J. Yan, K. Syoji, T. Kuriyagawa and H. Suzuki, “Ductile Regime Turning at Large Tool Feed,” Journal of Materials Processing Technology, Vol. 121, pp.363-372, 2002.
[8]F. Z. Fang and G. X. Zhang, “An Experimental Study of Edge Radius Effect on Cutting Single Crystal Silicon,” International Journal of Advanced Manufacturing Technology, Vol. 22, pp.703–707, 2003.
[9]P. S. Sreejith, “Machining Force Studies on Ductile Machining of Silicon Nitride,” Journal of Materials Processing Technology, Vol. 169, pp.414–417, 2005.
[10]S. Venkatachalam, X. Li and S. Y. Liang, “Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials,” Journal of Materials Processing Technology, 2008.
[11]S. Arefin, X.P. Li, M. Rahman and K. Lin, “The Upper Bound of Tool Edge Radius for Nanoscale Ductile Mode Cutting of Silicon Wafer,” International Journal of Advanced Manufacturing Technology, Vol. 31, pp.655–662, 2007.
[12]K.-W. Xu, X.-S. Zhu, B. Zhao, B. Chen and H.-H. Wang, “Analysis of Hard-Brittle Material Ductile-Regime Machining using Fracture Mechanics FEM,” Journal of ShangHai JiaoTong University, Vol. 35, pp.1838-1841, 2001.
[13]T. G. Kumbera, J. A. Patten, H. P. Cherukuri, C. J. Brand and T. D. Marusich, “Numerical Simulation of Ductile Machining of Silicon Nitride,” Proceedings of 4th CIRP Workshop on Machining Models, 2001.
[14]S. K. Ajjarapu, J. A. Patten, H. Cherukuri and C. Brand, “Numerical Simulations of Ductile Regime Machining of Silicon Nitride using the Drucker–Prager Material Model,” Journal of Mechanical Engineering Science, Vol. 218, pp.577-582, 2004.
[15]T. Ozel and E. Zeren, “Numerical Modelling of Meso-Scale Finish Machining with Finite Edge Radius Tools,” International Journal of Machining and Machinability of Materials, Vol. 2, pp.451-468, 2007.
[16]X. S. Han, B. Lin, S. Y. Yu and S. X. Wang, “Investigation of Tool Geometry in Nanometric Cutting by Molecular Dynamics Simulation,” Journal of Materials Processing Technology, Vol. 129, pp.105–108, 2002.
[17]M. B. Cai, X. P. Li and M. Rahman, “Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon using Molecular Dynamics Simulation,” International Journal of Machine Tools & Manufacture, Vol. 47, pp.75–80, 2007.
[18]M. B. Cai, X. P. Li, M. Rahman and A. A. O. Tay, “Crack Initiation in relation to the Tool Edge Radius and Cutting Conditions in Nanoscale Cutting of Silicon,” International Journal of Machine Tools & Manufacture, Vol. 47, pp.562–569, 2007.
[19]傅士桓,金屬正交切削切屑幾何和形成之有限元素模擬,大同大學機械工程研究所碩士論文,2007。
[20]傅光華,切削工具學,高立圖書,台北市,1986。
[21]Sivaramakrishnan Venkatachalam, “Predictive Modeling for Ductile Machining of Brittle Materials,” Ph.D. Dissertation, George W. Woodruff School of Mechanical Engineering, 2007.
[22]K. Liu, X. P. Li, M. Rahman and X. D. Liu, “A Study of the Cutting Modes in the Grooving of Tungsten Carbide,” International Journal of Advanced Manufacturing Technology, Vol. 24, pp.321–326, 2004.
[23]愛發股份有限公司編著,Abaqus實務入門引導,全華圖書,台北市,2007。
[24]G. T. A. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, pp.26, 1998.
[25]T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 1991.
[26]E. E. Gdoutos, Fracture Mechanics - An Introduction, Springer Netherlands, pp.53-54, 2005.
[27]M. Beghini, L. Bertini and V. Fontanari, "Stress Intensity Factors for an Inclined Edge Crack in a Semiplane," Engineering Fracture Mechanics, Vol. 62, pp.607-613, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top