跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昶勝
研究生(外文):Chang-Sheng Huang
論文名稱:電腦數控型戟齒輪創成機線上量測及齒面修正數學模式之研究
論文名稱(外文):A study on the directly measuring system of the modern six-axis CNC hypoid gear generator and mathematic model of the flank correction
指導教授:馮展華馮展華引用關係
指導教授(外文):Zhan-Hua Feng
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:線上量測戟齒輪
外文關鍵詞:directly measuringhypoid gear
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1171
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
六軸數控戟齒輪切齒機具備足夠自由度,能實行各種蝸線傘齒輪和戟齒輪的加工法,並可透過軟體進行位置插補而能達到任意齒面修整的目的。本篇論文以發展一戟齒輪切齒加工自動齒面誤差修正系統為目標,使得戟齒輪從加工、量測到齒面誤差修正都能在同一切齒機上完成。根據數學模式建立泛用的戟齒輪齒面修正技術。接著在於齒面拓墣線上量測系統的建立,推導戟齒輪齒面量測數學模式,依此數學模式規劃探針量測NC路徑進行齒面量測,再比較量測結果和理論齒面資料計算齒面誤差量,並藉由建立之機台幾何誤差之敏感度矩陣,修正機台存在之各項誤差,最後由建立的六軸創成機齒面修正技術,直接針對數控戟齒輪機各軸位置進行調整計算,完成戟齒輪線上量測和齒面誤差自動補償之加工設計軟體,此研究之技術亦能被應用到其他型式的工具機台。
The modern six-axis CNC hypoid gear generator has enough degree of freedom to apply existing cutting systems for spiral bevel and hypoid gears. Numerical control has made it possible to perform nonlinear flank modification features. This paper research project and aims to develop the automatic flank correction system for hypoid gears. Gear cutting, flank measurement and flank correction processes can be achieved in the same machine. Based on the proposed universal hypoid gear generator, the flank correction method will be developed. Then we shall focus on the establishment of online measurement system for flank topography. The mathematical model of flank measurement will be studied. Based on the model, we can plan the NC codes of flank measurement. And the flank deviation can be obtained by comparing the measurement data with theoretical nominal data. We can correct every machine geometry error with the sensitive matrix of the machine geometry error. Last it will be developed that the flank correction method based on the six-axis hypoid gear generator. Therefore, the machine setting correction can be applied directly without conversion from the universal machine to six-axis hypoid gear generator. We can develop the cutting software of the online measurement system and flank correction .The developed technologies in the research also can be applied in other type machine tools.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 XI
符號說明 XII
第一章 序論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 文獻回顧 5
1-4 論文架構 6
第二章 線上閉迴路量測數學模式建立 8
2-1 現代齒輪量測技術之發展 8
2-2 線上量測系統介紹 9
2-2-1 線上閉迴路系統 10
2-2-2 線上量測系統之條件與優勢 11
2-2-3 精密探頭的分類與演變 11
2-3 齒面誤差修正原理 15
2-3-1 誤差修正流程 15
2-3-2 敏感度矩陣原理 17
第三章 量測路徑規劃與程式設計 19
3-1 機台模型之建立 19
3-1-2 座標轉換矩陣計算 21
3-1-3 探頭選取與補償 23
3-2 量測路徑規劃 28
3-2-1 網格規劃 28
3-1-4 齒面定位 29
3-2-3 規劃量測動作 29
3-3 線上量測程式介紹 32
3-4 Vericut軟體模擬量測路徑 37
第四章 機台幾何誤差與修正 40
4-1 機台幾何誤差 40
4-1-1 機台機構的運動誤差 41
4-1-2 探頭量測力的誤差 44
4-2 誤差修正流程與數學模型 46
4-3 修正結果 50
第五章 線上閉迴路量測結果與討論 57
5-1 實驗流程 57
5-2 數據處理 65
5-3 齒面修正流程 67
5-4 實驗結果 70
5-5 實際修正結果與討論 77
第六章 結論與未來展望 82
參考文獻 84
[01]王如鈺,齒輪原理概要,憬藝企業有限公司出版,1993.
[02]溫光溥,"三次元量測儀精度評估及校正",機械工業雜誌,1993.
[03]張國雄,"三次元量測機的誤差補償", 機械月刊第二十卷第二
期,機械月刊社,1994.
[04]張國雄,三座標測量機,天津大學出版社,1999.
[05]陳菘景,三次元量測軟體發展,中央大學,碩士論文,2000.
[06]梁宋茗,三座標測量機的設計使用維修與檢定,中國計量出版社,2001.
[07] 李春,三座標測量機的曲面匹配與探頭半徑修正,天津大學,2003.
[08] 王培郁,Study on the Mathematical Model of CNC Hypoid Generator and Flank Modification,中正大學,博士論文,2004.
[09] 石照耀、韋志會,精密探頭技術的演變與發展趨勢,北京工業
大學,2005.
[10] 孫曉娟,齒輪參數和精度的三維座標測量儀檢測,哈爾濱理工
大學,碩士論文,2006.
[11] 黃新冠,弧齒錐齒輪齒面誤差測量及加工調整參數修正,河南科技大學,碩士論文,2006.
[12] 黃世陽,Visual Basic 2005完美的演繹,知城數位科技,2006.
[13] 石伊蓓,Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Gear Generator,中正大學,博士論文,2006.
[14] 石伊蓓、林忠運,六軸電腦數控型戟齒輪創成機開發,機械月刊,2007.
[15] 勞奇成、劉志紅,虛擬CNC 齒輪測量中心的建模和過程仿真,
西安工業大學,2007.
[16] 日向俊二著,陳亦苓譯,“Visual Basic 2005 功能索引式參
考手冊",旗標出版股份有限公司,2007.
[17] G. Zhang, "Error compensation of coordinate measuring machines", Annals of the CIRP, 34, pp. 445-448 (1985).
[18] Klingelnberg, “Screen guide to the bevel gear software on an HP evaluation unit”,1990.
[19]Carl Zeiss, Hofler,“Measuring software for bevel gears”,Gear-Bevel,1993 Dev.
[20] John A. Bosxh, Coordinate measuring machines and system, Marcel Dekker, Inc. (1995).
[21] W. G. Weakers and P. H. J. Schellekens, "Compensation for dynamic errors of coordinate measuring machines", Measurement, Vol. 20, No.3, pp. 197-209 (1997).
[22] J. R. R. Mayer, Y A Mir, F Trochu, A. Vafaeesefat and M Balazinski,"Touch probe radius compensation for coordinate measurement usingkriging interpolation", Proc Instn Mech Engrs, Vol. 211, Part B, pp.11-18(1997).
[23] P. C. Miguel, T. King and A. Abackerli, "A review on methods for probe performance verification", Measurement Vol. 23, pp. 15-33 (1998).
[24] Fanuc, “FANUC Series 16i/180i/180is-MB5 OPERATOR''S MANUAL (B63534EN/02)”, Ch4.16, 2002.
[25] Litvin, F. L., and Funentes, A., Gear Geometry and Applied Theory, Cambridge University Press, New York, 2004
[26] Fanuc, “FANUC Series 16i/18i/21is-MODEL B DESCRIPTIONS (B63522EN/03)”, Ch17.1, 2004.
[27] Fanuc, “FANUC Series 16i-MODEL B PARAMETER MANUAL (B63530EN/02)”, Ch4.42, Ch4.14, 2004.
[28]Zhi-Guo Feng , Ming-Qi Niu , Research and Application of the Gear Modeling Based on Solid Works , Journal of Guizhou University of Technology,Vol.31,No.5,pp.42-44,2005.
[29]G.Goch,Gear Metrology,Department Measurement and Control University of Bremen,2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top