跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭信榮
研究生(外文):Shin-rung Peng
論文名稱:單一粗糙峰接觸之奈米力學探討
論文名稱(外文):A Nanomechanics Study of Single Asperity Contact
指導教授:鄭友仁
指導教授(外文):Yeau-Ren Jeng
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:221
中文關鍵詞:單一粗糙峰接觸側向接觸面積成長吸附層側向力係數原子模型之有限元素法
外文關鍵詞:Single Asperity ContactLateral Junction GrowthAdsorbed LayersTangential Force CoefficientAtomic Model FEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
表面接觸模式的發展扮演著一個推進接觸力學的演進,以應用於研究與探討物理現象包含磨耗、摩擦與熱傳導等的重要角色。近年來,奈米科技的發展與精密元件的微小化,使得對於奈米尺度下介面現象的了解成為一個刻不容緩的議題。本文利用非線性有限元素的計算架構建立了原子模型之有限元素法去探討單一粗糙峰接觸的變形機制與介面現象。此模擬方法屬於半靜態模擬,因此不需要考慮平板下壓的速度問題,大大地減少電腦運算所花費的時間。
由平板下壓銅粗糙峰的模擬結果可知,von Mises應力集中是造成粗糙峰內銅原子產生滑移的主要因素,在奈米尺度下所觀察到的塑性變形機制為局部高應力造成原子結晶結構不穩定而導致原子滑移的產生。本文的模擬結果發現,奈米尺度下側向接觸面積成長的機制為原子間的滑移,而差排在巨觀下的表現即為塑性變形,此結果應證了側向接觸面積成長為一塑性變形的過程之論點。此外,吸附層的存在會大大地阻礙側向接觸面積成長的發生直到干涉量大到足以在平板下壓的過程中排開吸附層原子而使平板與粗糙峰之間有接觸為止。在不具吸附層的摩擦接觸分析中顯示出,側向力會隨著平板側向移動距離的增加而上升,直到側向接觸面積成長終止,此時也會得到一個最大的側向力係數值。觀察模擬結果可以發現,側向力曲線趨勢的變化可以當作用來判斷側向接觸面積成長的終止與黏滑運動的開始之物理指標。吸附層的存在會大大地隔開平板與吸附層而阻礙黏滑運動的發生,使得側向力曲線的趨勢由不具吸附層的鋸齒狀型態變成正弦曲線的型態。本文從奈米尺度觀點提供了側向接觸面積成長一有價值的詮釋。
The development of microcontact models plays a key role to enhance the contact mechanics in studying and modeling physical phenomena in various fields such as wear, friction and thermal conductivity. The recent drive to reduce the characteristic size of devices prompted by the evolution of nanotechnology renders the understanding of interfacial phenomena at the nanoscale a pivotal issue. This dissertation applies an alternative approach based on the finite element formulation using atomic model to investigate the deformation mechanism interfacial phenomenon of a single contact asperity. The computation in this way is quasi-static, thereby greatly reducing the computing time.
This approach is utilized to elucidate the deformation mechanism and interfacial phenomenon of a single asperity contact. The results present that the concentration of the von Mises stress leads to the slips of asperity atoms. The plastic deformation mechanism at the nanoscale is the high stress which leads to an unstable crystal structure and slips of atoms. Our results correlate the incipient lateral junction growth with the slips of asperity atoms, which substantiates the proposition that the junction growth is a plastic deformation process. Furthermore, the presence of an adsorbed layer on the asperity surface significantly delays the onset of lateral junction growth until the level of contact interference is such that the adsorbed layer is splayed out from the interface resulting in a direct contact between the asperity and the flat surface. For the results without adsorbed layers, it shows that the lateral force increases with an increasing lateral displacement of flat until the point at which junction growth ceases, which corresponds to the point of maximum tangential force coefficient. The transition of lateral force type profile plays a role of physical indicator to evaluate the cease of lateral junction growth and beginning of stick-slip motion. The presence of an adsorbed layer significantly hinders the stick-slip motion and leads a sinusoidal type profile of lateral force. This dissertation provides a valuable interpretation of the lateral junction growth phenomenon from a nanoscale perspective.
目 錄
摘要……………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
致謝……………………………………………………………………Ⅴ
目錄……………………………………………………………………Ⅵ
表目錄…………………………………………………………………IⅩ
圖目錄…………………………………………………………………Ⅹ
符號表…………………………………………………………………XVI
第一章 緒論…………………………………………………………1
1-1 前言………………………………………………………………1
1-2 表面接觸力學理論模式…………………………………………4
1-3 奈米力學之文獻回顧……………………………………………12
1-4 側向接觸面積成長與吸附層……………………………………13
1-5 研究動機及目的…………………………………………………16
1-6 本文架構…………………………………………………………18
第二章 數值模擬方法………………………………………………25
2-1 分子模擬方法……………………………………………………25
2-2 分子作用力及勢能函數…………………………………………29
2-2-1 粗糙峰與剛性平板間的作用力……………………………30
2-2-2 表面吸附層之間的作用勢能………………………………31
2-2-3 分子鏈鍵結…………………………………………………32
2-2-4 鏈狀物對鏈狀物、鏈狀物對銅原子、鏈狀物對碳原子 (Lennard-Jones potential)…………………………………………34
2-3 截斷半徑…………………………………………………………36
2-4 表列法……………………………………………………………38
2-5 平衡方程式的建立………………………………………………40
2-6 邊界限制條件……………………………………………………44
2-7 應力應變分析方法………………………………………………47
2-8 差排與滑移向量分析……………………………………………50
2-9 模擬流程圖………………………………………………………53
第三章 模擬結果與討論……………………………………………65
3-1 模型架構之設定與參數驗證……………………………………65
3-2 二維模型模擬分析 – 平板與粗糙峰間無吸附力……………67
3-3 二維模型模擬分析 – 平板與粗糙峰間具吸附力……………72
3-4 二維模型模擬分析 – 平板與粗糙峰間具吸附力的滑動接觸 (Sliding Contact)…………………………………………………77
3-5 二維模型模擬分析 – 平板與粗糙峰間具吸附力的滑移接觸 (Sliding Contact)(長距離移動平板以觀察平板所受的正向力的變化)……………………………………………………………………84
3-6 二維模型模擬分析 – 平板與粗糙峰間具表面吸附層………89
3-7 二維模型模擬分析 – 平板與粗糙峰間具表面吸附層之滑動觸……………………………………………………98
3-8 二維模型模擬分析 – 吸附層對側向接觸面積成長的影響………………………………………………………………………105
3-9 二維模型模擬分析 – 吸附層對正向力、側向力與側向力係數的影響…………………………………………………………………113
3-10三維模型模擬分析 – 平板與粗糙峰間具吸附力之滑動接觸……………………………………………………………………123
3-10-1 不同干涉量下側向拉動平板的滑動接觸…………………124
3-10-2 同干涉量、不同滑動角度下側向拉動平板的滑動接觸……………………………………………………………………127
第四章 結論與建議…………………………………………………209
4-1 結論……………………………………………………………209
4-2 未來研究方向的建議…………………………………………211
參考文獻……………………………………………………………212
自述…………………………………………………………………221
[1]H. Hertz, 1881, “On Contact of Elastic Solids,” J. Reine Angew. Math., 92, pp. 156–171.
[2]F.P. Bowden and D. Tabor, 1954, The Friction and Lubrication of Solids, Oxford, Clarendon, UK.
[3]J. A. Greenwood and J. B. P. Williamson, 1966, “Contact of Nominal Flat Surface,” Proc. R. Soc. Lond., A295, pp. 300–319.
[4]P. R. Nayak, 1973, ”Random Process Model of Rough Surfaces in Plastic Contact,” Wear, 26, pp. 305–333.
[5]W. R. Chang, I. Etsion and D. B. Bogy, 1987, “An Elastic–Plastic Model for the Contact of Rough Surfaces,” ASME J. Tribol., 109, pp. 257–263.
[6]Y. Zhao, D. McCool and L. Chang, 2000, “An Asperity Microcontact Model Incroporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME J. Tribol., 107, pp. 86–93.
[7]Y. R. Jeng and P. Y. Wang, 2003, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation,” ASME J. Tribol., 125, pp. 232–240.
[8]J. H. Horng, 1998, "An Elliptic Elastic–Plastic Asperity Microcontact Model for Rough Surfaces," ASME J. Tribol., 120, pp. 82–89.
[9]L. Kogut and I. Etsion, 2002, “Elastic–Plastic Contact Analysis of a Sphere and A Rigid Flat,” ASME J. Appl. Mech., 69, pp. 657–662.
[10]L. Kogut and I. Etsion, 2003, “A Finite Element Based Elastic–Plastic Model for the Contact of Rough Surface,” Tribol. Trans., 46, pp. 383–390.
[11]K. L. Johnson, K. Kendall and A. D. Roberts, 1971, “Surface Energy and the Contact of Elastic Body,” Proc. R. Soc. Lond., A324, pp. 301–313.
[12]B. V. Derjaguin, V. M. Muller and Y. P. Toporov, 1975, “Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., 53, pp. 314–326.
[13]J. I. McCool, 1986, “Comparison of Models for The Contact of Rough Surfaces,” Wear, 107, pp. 37–60.
[14]Z. H. Powierza, T. Klimczak and A. Polijaniuk, 1992, “On the Experimental Verification of the Greenwood–Williamson Model for the Contact of Rough Surface,” Wear, 154, pp. 115–124.
[15]J. Pullen and J. B. P. Williamson, 1972, “On the Plastic of Rough Surfaces,” Proc. R. Soc. Lond., A327, pp. 159–173.
[16]J. B. P. Williamson, J. Pullen and R. T. Hunt, 1969, “The Shape of Solid Surfaces,” Surface Mechanics, a symposium volume, ASME, pp. 24–35.
[17]E. J. Abbot and F. A. Firestone, 1933, “Specifying Surface Quality–A Method Based on Accurate Measurement and Comparison,” Institution of Mechanical Engineers, 55, pp. 569.
[18]Yeau-Ren Jeng and Shin-Rung Peng, 2006, “Elastic–Plastic Contact Behavior Considering Asperity Interactions for Surfaces with Various Height Distributions,” ASME J. Tribol, 128, pp. 246–251.
[19]A. E. H. Love, 1929, ”Stress Produced in a Semi–Infinite Solid by Pressure on Part of the Boundary,” Philos. Trans. R. SOC. London, Ser. A, 228, pp. 377–420.
[20]Y. Zhao and L. Chang, 2001, “A Model of Asperity Interactions in Elastic–Plastic Contact of Rough Surfaces,” ASME J. Tribol., 123, pp. 857–864.
[21]N. L. Johnson, 1949, “System of Frequency Curves Generated by Methods of Translation,” Biometrika, 36, pp. 149–176.
[22]Y. R. Jeng, 1998, “Characterization of Surface Height Distributions,” J. Chin. Soc. Mech. Eng., 19, pp. 417–423.
[23]Yeau-Ren Jeng and Shin-Rung Peng, 2007, “Contact Behavior of Surfaces Containing Elliptical Asperities with Gaussian and Non–Gaussian Height Distributions,” ASME J. Tribol, 129, pp. 743–753.
[24]Yeau-Ren Jeng and Shin-Rung Peng, 2009, “Static Friction Model of Elastic–Plastic Contact Behavior of Surface with Elliptical Asperities,” ASME J. Tribol, 131, pp. 021403.
[25]Y. R. Jeng, Z. W. Lin and S. H. Shyu, 2004, “Changes of Surface Topography during Running–in Process,” ASME J. Tribol., 126, pp. 620–625.
[26]J. H. Horng, Y. R. Jeng and C. L. Chen, 2004, “A Model for Temperature Rise of Polishing Process Considering Effects of Polishing Pad and Abrasive,” ASME, J. Tribol., 126, pp. 422–429.
[27]Y. R. Jeng and H. J. Tsai, 2003, “Improved Model of Wafer/Pad Powder Slurry for CMP,” Journal of Electrochemical Society, 150, pp. 348–354.
[28]Y. R. Jeng and P. Y. Huang, 2005, “A Material Removal Rate Model Considering Interfacial Micro–Contact Wear Behavior for Chemical Mechanical Polishing,” ASME, J. Tribol., 127, pp. 190–197.
[29]Y. R. Jeng, J. N. Aoh and C. M. Wang, 2001, “Thermosonic Wire Bonding of Gold Wire onto Copper Pad Using the Saturated Interfacial Phenomena,” Journal of Physics D: Applied Physics, Institute of Physics, 34, pp. 3515–3521.
[30]Y. R. Jeng and J. N. Lin, 2003, “Study of Interfacial Phenomena Affecting Thermosonic Wire Bonding in Microelectronics,” ASME J. Tribol., 125, pp. 578–581.
[31]Y. R. Jeng, C. M. Wang, S. M. Chiu and C. Y. Chen, 2004, “A Novel Method for Enabling the Thermosonic Wire Bonding of Chips with Copper Interconnects,” Joint publication of IEEE and Electrochemical Society, Electrochemical and Solid–State Letters, 7, pp. G335–G337.
[32]Y. R. Jeng and S. M. Chiu, 2006, “Innovative Wire Bonding Method Using a Chemically Reacted Thin Layer for Chips with Copper Interconnects,” Journal of Electronics Materials, 35, pp. 279–285.
[33]R. L. Jackson and I. Green, 2005, “A Finite Element Study of Elasto–Plastic Hemispherical Contact against a Rigid Flat,” ASME J. Tribol., 127, pp. 343–354.
[34]D. Tabor, 1977, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., 58, pp. 2–13.
[35]P. R. Cha, D. J. Srolovitz and T. K. Vanderlick, 2004, “Molecular Dynamics Simulation of Single Asperity Contact,” Acta Materialia, 52, pp. 3983–3996.
[36]B. Q. Luan and M. O. Robbins, 2005, “The Breakdown of Continuum Models for Mechanical Contacts,” Nature, 435, pp. 929–932.
[37]Y. R. Jeng, and W. C. Kao and P. C. Tsai, 2007, “Investigation into the Mechanical Contact Behavior of Single Asperities using Static Atomistic Simulations,” Appl. Phys. Lett., 91, pp. 091904.
[38]Y. Mo, K. T. Turner, and I. Szlufarska, 2009, “Friction Laws at the Nanoscale,” Nature, 457, pp. 1116–1119.
[39]R.C. Parker and D. Hatch, 1950, “The Static Coefficient of Friction and the Area of Contact,” Proc. Phys. Soc. Lond. B, 63, pp. 185–197.
[40]J. S. Courtney-Pratt, and E. Eisner, 1957, “The Effect of a Tangential Force on the Contact of Metallic Bodies,” Proc. R. Soc. Lond. A, 238, pp. 529–550.
[41]J. S. McFarlane and D. Tabor, 1950, “Relation between Friction and Adhesion,” Proc. R. Soc. Lond. A, 202, pp. 244–253.
[42]D. Tabor, 1959, “Junction Growth in Metallic Friction: the Role of Combined Stresses and Surface Contamination,” Proc. R. Soc. Lond., Ser. A., 251, pp. 378–393.
[43]R. D. Mindlin, 1949, “Compliance of Elastic Bodies in Contact,” ASME Trans. J. Appl. Mech., 16, pp. 259–268.
[44]R. D. Mindlin and H. Deresiewicz, 1953, “Elastic Spheres in Contact Under Varying Oblique Forces,” ASME Trans. J. Appl. Mech., 20, pp. 327–344.
[45]V. Brizmer, Y. Kligerman and I. Etsion, 2006, “Elastic–Plastic Spherical Contact under Combined Normal and Tangential Loading in Full Stick,” Tribol. Lett., 25, pp. 61–69.
[46]V. Brizmer, Y. Kligerman and I. Etsion, 2007, “A Model for Junction Growth of a Spherical Contact under Full Stick Condition,” ASME J. Tribol., 129, pp. 783–790.
[47]A. Ovcharenko, G. Halperin and I. Etsion, 2008, “In–situ and Real–Time Optical Investigation of Junction Growth in Spherical Elastic–Plastic Contact,” Wear, 264, pp. 1043–1050.
[48]L. Chang and H. Zhang, 2007, “A Mathematical Model for Frictional Elastic–Plastic Sphere–on–flat Contacts at Sliding Incipient,” ASME J. Appl. Mech., 74, pp. 100–106.
[49]C. F. McFadden and A. J. Gellman, 1998, “Metallic Friction: The Effect of Molecular Adsorbates,” Surface Science, 409, pp. 171–182.
[50]G. He, M. H. Müser and M. O. Robbins, 1999, “Adsorbed Layers and the Origin of Static Friction”, Science, 284, pp. 1650–1652.
[51]M. Chandross, C. D. Lorenz, M. J. Stevens and G. S. Grest, 2008, “Simulations of Nanotribology with Realistic Probe Tip Models,” Langmuir, 24, pp. 1240–1246.
[52]何怡帆,高世平,2001,“我國奈米科技研究之規劃與推動概況”,自然科學簡訊,第十三卷第四期,pp. 125–129.
[53]T. Inamura, H. Suzuki and N. Takezawa, 1991, “Cutting Experiments in A Computer Using Atomic Models of A Copper Crystal and A Diamond Tool,” Int. J. Japan Soc. Prec. Eng., 25, pp. 231.
[54]Y. R. Jeng and C. M. Tan, 2002, “Computer Simulation of Tension Experiments of A Thin Film Using An Atomic Model,” Phys. Rev. B, 65, pp. 174107(1–7).
[55]Y. R. Jeng and C. M. Tan, 2004, “Theoretical Study of Dislocation Emission Around A Nanoindentation Using A Static Atomistic Model,” Phys. Rev. B., 69, pp. 104109.
[56]Y. R. Jeng and C. M. Tan, 2004, “Study of Nanoindentation Using FEM Atomic Model,” ASME J. Tribol., 126, pp. 767–774.
[57]N. Metropolis, A.W. Resenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, 1953, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., 21, pp.1087–1092.
[58]J. H. Irving and J. G. Kirkwood, 1950, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., 18, pp. 817–829.
[59]J. E. Lennard–Jones, 1924, “The Determination of Molecular Fields: From the Variation of the Viscosity of A Gas with Temperature,” Proc. R. Soc. Lond., A106, pp. 441–453.
[60]Don E. Harrison, Jr., 1981, “A Molecular Dynamics Simulation Study of the Influence of the Ion–atom Potential Function upon Sputtering,” J Appl. Phys., 52, pp. 1499–1508.
[61]M. Born and J. E. Mayer, 1932, “The Lattice Theory of Ion Crystals,” Zeitschrift fuer Physik, Phys., 75, pp. 1–18.
[62]R. A. Johnson, 1987, “Analytic Nearest–Neighbor Model for FCC Metals,” Phys. Rev. B, 37, pp. 3924–3931.
[63]P. Heino, H. Hakkinen and K. Kaski, 1998, “Molecular Dynamics Study of Copper with Defects under Strain,” Phys. Rev. B, 58, pp. 641–652.
[64]J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov and S. Yip, 1998, “Interatomic Potential for Silicon Defects and Disordered Phase,” Phys. Rev. B, 58, pp. 2539–2550.
[65]M. Kroger, W. Loose and S. Hess, 1993, “Structural Changes and Rheology of Polymer Melts via Nonequilibrium Molecular Dynamics,” J Rheol., 37, pp. 1057–1079.
[66]陳家貞,2002,”利用分子動力學探討高分子與生化流體之流變性質”,國立中正大學 (碩士論文)
[67]L. Verlet, 1967, “Computer ‘experiments’ on Classical Fluids I, Thermodynamical Properties of Lennard–Jones Molecules,” Phys. Rev, 159, pp. 98–103.
[68]L. Verlet, 1968, “Computer ‘experiments’ on Classical Fluids II, Equilibrium Correlation Function,” Phys. Rev, 165, pp. 201–214.
[69]B. Quentrec and C. Brot, 1975, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comp. Phys. 13, pp. 430–432.
[70]M. A. Crisfield, 1997, Non–linear Finite Element Analysis of Solids and Structures, John Wiley & Sons, pp. 586–587. (Book)
[71]T. Inamura, N. Takezawa and Y. Kumaki, 1933, “Mechanics and Energy Dissipation in Nanoscale Cutting”, Ann. CIRP, 42, pp. 79–82.
[72]W. Sekkal, H. Aourag and M. Certier, 1998, “Molecular Dynamics Simulations of Uniaxial and Hydrostatic Compression of C70 in the Disordered Phase,” Comput. Mater. Sci., 9, pp. 295–302.
[73]D. Hull and D. J. Bacon, 2001, Introduction to Dislocations, Butterworth–Heinemann. (Book)
[74]C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, 1998, “Dislocation Nucleation and Defect Structure during Surface Indentation,” Phys. Rev. B, 58, pp. 11085–11088.
[75]J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton and S. M. Foiles, 2001, “Surface Step Effects on Nanoindentation,” Phys. Rev. Lett., 87, pp. 165507.
[76]F. P. Bowden and J. E. Young, 1951, “Friction of Clean Metals and the Influence of Adsorbed Films,” Proc. R. Soc. London, Ser. A, 208, pp. 311–325.
[77]Yeau-Ren Jeng and Shin-Rung Peng, 2009, “Investigation into the Lateral Junction Growth of Single Asperity Contact Using Static Atomistic Simulations,” Appl. Phys. Lett., 94, pp. 163103.
[78]C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, 1987, “Atomic–Scale Friction of a Tungsten Tip on a Graphite Surface,” Phys. Rev. Lett., 59, pp. 1942–1945.
[79]J. Shimizu, H. Eda, M. Yoritsune and E. Ohmura, 1998, “Molecular Dynamics Simulation of Friction on the Atomic Scale,” Nanotechnology, 9, pp. 118–123.
[80]B. Li, P. C. Clapp, J. A. Rifkin and X. M. Zhang, 2001, “Molecular Dynamics Simulation of Stick–Slip,” J. Appl. Phys., 90, pp. 3090–3094.
[81]A. Socoliuc, R. Bennewitz, E. Gnecco and E. Meyer, 2004, “Transition from Stick–Slip to Continuous Sliding in Atomic Friction: Entering a New Regime of Ultra–Low Friction,” Phys. Rev. Lett., 92, pp. 134301.
[82]D. Mulliah, S. D. Kenny, and R. Smith, 2004, “Modeling of Stick–Slip Phenomena Using Molecular Dynamics,” Phys. Rev. B, 69, pp. 205407.
[83]G. Amontons, 1699, Mémoires de ľ Académie Royale A, pp. 257–282.
[84]U. D. Schwarz, W. Allers, G. Gensterblum, and R. Wiesendanger, 1995, “Low–load Friction Behavior of Epitaxial C60 Monolayers under Hertzian Contact,” Phys. Rev. B 52, pp. 14976–14984.
[85]R.W., Carpick, D.F., Ogletree, and M., Salmeron, 1997, “Lateral Stiffness: A New Nanomechanical Measurement for the Determination of Shear Strengths with Friction Force Microscopy,” Appl. Phys. Lett., 70, pp. 1548.
[86]I. Etsion, and M. Amit, 1993, “The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces,” ASME J. Tribol., 115, pp. 406–410.
[87]D. I. Kim, H. S. Ahn and D. H. Choi, 2004, “Effect of Surface Hydrophilicity and Water Vapor Pressure on the Interfacial Shear Strength of Adsorbed Water Layer,” Appl. Phys. Lett., 84, pp. 1919.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top