[1]H. Hertz, 1881, “On Contact of Elastic Solids,” J. Reine Angew. Math., 92, pp. 156–171.
[2]F.P. Bowden and D. Tabor, 1954, The Friction and Lubrication of Solids, Oxford, Clarendon, UK.
[3]J. A. Greenwood and J. B. P. Williamson, 1966, “Contact of Nominal Flat Surface,” Proc. R. Soc. Lond., A295, pp. 300–319.
[4]P. R. Nayak, 1973, ”Random Process Model of Rough Surfaces in Plastic Contact,” Wear, 26, pp. 305–333.
[5]W. R. Chang, I. Etsion and D. B. Bogy, 1987, “An Elastic–Plastic Model for the Contact of Rough Surfaces,” ASME J. Tribol., 109, pp. 257–263.
[6]Y. Zhao, D. McCool and L. Chang, 2000, “An Asperity Microcontact Model Incroporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME J. Tribol., 107, pp. 86–93.
[7]Y. R. Jeng and P. Y. Wang, 2003, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation,” ASME J. Tribol., 125, pp. 232–240.
[8]J. H. Horng, 1998, "An Elliptic Elastic–Plastic Asperity Microcontact Model for Rough Surfaces," ASME J. Tribol., 120, pp. 82–89.
[9]L. Kogut and I. Etsion, 2002, “Elastic–Plastic Contact Analysis of a Sphere and A Rigid Flat,” ASME J. Appl. Mech., 69, pp. 657–662.
[10]L. Kogut and I. Etsion, 2003, “A Finite Element Based Elastic–Plastic Model for the Contact of Rough Surface,” Tribol. Trans., 46, pp. 383–390.
[11]K. L. Johnson, K. Kendall and A. D. Roberts, 1971, “Surface Energy and the Contact of Elastic Body,” Proc. R. Soc. Lond., A324, pp. 301–313.
[12]B. V. Derjaguin, V. M. Muller and Y. P. Toporov, 1975, “Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., 53, pp. 314–326.
[13]J. I. McCool, 1986, “Comparison of Models for The Contact of Rough Surfaces,” Wear, 107, pp. 37–60.
[14]Z. H. Powierza, T. Klimczak and A. Polijaniuk, 1992, “On the Experimental Verification of the Greenwood–Williamson Model for the Contact of Rough Surface,” Wear, 154, pp. 115–124.
[15]J. Pullen and J. B. P. Williamson, 1972, “On the Plastic of Rough Surfaces,” Proc. R. Soc. Lond., A327, pp. 159–173.
[16]J. B. P. Williamson, J. Pullen and R. T. Hunt, 1969, “The Shape of Solid Surfaces,” Surface Mechanics, a symposium volume, ASME, pp. 24–35.
[17]E. J. Abbot and F. A. Firestone, 1933, “Specifying Surface Quality–A Method Based on Accurate Measurement and Comparison,” Institution of Mechanical Engineers, 55, pp. 569.
[18]Yeau-Ren Jeng and Shin-Rung Peng, 2006, “Elastic–Plastic Contact Behavior Considering Asperity Interactions for Surfaces with Various Height Distributions,” ASME J. Tribol, 128, pp. 246–251.
[19]A. E. H. Love, 1929, ”Stress Produced in a Semi–Infinite Solid by Pressure on Part of the Boundary,” Philos. Trans. R. SOC. London, Ser. A, 228, pp. 377–420.
[20]Y. Zhao and L. Chang, 2001, “A Model of Asperity Interactions in Elastic–Plastic Contact of Rough Surfaces,” ASME J. Tribol., 123, pp. 857–864.
[21]N. L. Johnson, 1949, “System of Frequency Curves Generated by Methods of Translation,” Biometrika, 36, pp. 149–176.
[22]Y. R. Jeng, 1998, “Characterization of Surface Height Distributions,” J. Chin. Soc. Mech. Eng., 19, pp. 417–423.
[23]Yeau-Ren Jeng and Shin-Rung Peng, 2007, “Contact Behavior of Surfaces Containing Elliptical Asperities with Gaussian and Non–Gaussian Height Distributions,” ASME J. Tribol, 129, pp. 743–753.
[24]Yeau-Ren Jeng and Shin-Rung Peng, 2009, “Static Friction Model of Elastic–Plastic Contact Behavior of Surface with Elliptical Asperities,” ASME J. Tribol, 131, pp. 021403.
[25]Y. R. Jeng, Z. W. Lin and S. H. Shyu, 2004, “Changes of Surface Topography during Running–in Process,” ASME J. Tribol., 126, pp. 620–625.
[26]J. H. Horng, Y. R. Jeng and C. L. Chen, 2004, “A Model for Temperature Rise of Polishing Process Considering Effects of Polishing Pad and Abrasive,” ASME, J. Tribol., 126, pp. 422–429.
[27]Y. R. Jeng and H. J. Tsai, 2003, “Improved Model of Wafer/Pad Powder Slurry for CMP,” Journal of Electrochemical Society, 150, pp. 348–354.
[28]Y. R. Jeng and P. Y. Huang, 2005, “A Material Removal Rate Model Considering Interfacial Micro–Contact Wear Behavior for Chemical Mechanical Polishing,” ASME, J. Tribol., 127, pp. 190–197.
[29]Y. R. Jeng, J. N. Aoh and C. M. Wang, 2001, “Thermosonic Wire Bonding of Gold Wire onto Copper Pad Using the Saturated Interfacial Phenomena,” Journal of Physics D: Applied Physics, Institute of Physics, 34, pp. 3515–3521.
[30]Y. R. Jeng and J. N. Lin, 2003, “Study of Interfacial Phenomena Affecting Thermosonic Wire Bonding in Microelectronics,” ASME J. Tribol., 125, pp. 578–581.
[31]Y. R. Jeng, C. M. Wang, S. M. Chiu and C. Y. Chen, 2004, “A Novel Method for Enabling the Thermosonic Wire Bonding of Chips with Copper Interconnects,” Joint publication of IEEE and Electrochemical Society, Electrochemical and Solid–State Letters, 7, pp. G335–G337.
[32]Y. R. Jeng and S. M. Chiu, 2006, “Innovative Wire Bonding Method Using a Chemically Reacted Thin Layer for Chips with Copper Interconnects,” Journal of Electronics Materials, 35, pp. 279–285.
[33]R. L. Jackson and I. Green, 2005, “A Finite Element Study of Elasto–Plastic Hemispherical Contact against a Rigid Flat,” ASME J. Tribol., 127, pp. 343–354.
[34]D. Tabor, 1977, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., 58, pp. 2–13.
[35]P. R. Cha, D. J. Srolovitz and T. K. Vanderlick, 2004, “Molecular Dynamics Simulation of Single Asperity Contact,” Acta Materialia, 52, pp. 3983–3996.
[36]B. Q. Luan and M. O. Robbins, 2005, “The Breakdown of Continuum Models for Mechanical Contacts,” Nature, 435, pp. 929–932.
[37]Y. R. Jeng, and W. C. Kao and P. C. Tsai, 2007, “Investigation into the Mechanical Contact Behavior of Single Asperities using Static Atomistic Simulations,” Appl. Phys. Lett., 91, pp. 091904.
[38]Y. Mo, K. T. Turner, and I. Szlufarska, 2009, “Friction Laws at the Nanoscale,” Nature, 457, pp. 1116–1119.
[39]R.C. Parker and D. Hatch, 1950, “The Static Coefficient of Friction and the Area of Contact,” Proc. Phys. Soc. Lond. B, 63, pp. 185–197.
[40]J. S. Courtney-Pratt, and E. Eisner, 1957, “The Effect of a Tangential Force on the Contact of Metallic Bodies,” Proc. R. Soc. Lond. A, 238, pp. 529–550.
[41]J. S. McFarlane and D. Tabor, 1950, “Relation between Friction and Adhesion,” Proc. R. Soc. Lond. A, 202, pp. 244–253.
[42]D. Tabor, 1959, “Junction Growth in Metallic Friction: the Role of Combined Stresses and Surface Contamination,” Proc. R. Soc. Lond., Ser. A., 251, pp. 378–393.
[43]R. D. Mindlin, 1949, “Compliance of Elastic Bodies in Contact,” ASME Trans. J. Appl. Mech., 16, pp. 259–268.
[44]R. D. Mindlin and H. Deresiewicz, 1953, “Elastic Spheres in Contact Under Varying Oblique Forces,” ASME Trans. J. Appl. Mech., 20, pp. 327–344.
[45]V. Brizmer, Y. Kligerman and I. Etsion, 2006, “Elastic–Plastic Spherical Contact under Combined Normal and Tangential Loading in Full Stick,” Tribol. Lett., 25, pp. 61–69.
[46]V. Brizmer, Y. Kligerman and I. Etsion, 2007, “A Model for Junction Growth of a Spherical Contact under Full Stick Condition,” ASME J. Tribol., 129, pp. 783–790.
[47]A. Ovcharenko, G. Halperin and I. Etsion, 2008, “In–situ and Real–Time Optical Investigation of Junction Growth in Spherical Elastic–Plastic Contact,” Wear, 264, pp. 1043–1050.
[48]L. Chang and H. Zhang, 2007, “A Mathematical Model for Frictional Elastic–Plastic Sphere–on–flat Contacts at Sliding Incipient,” ASME J. Appl. Mech., 74, pp. 100–106.
[49]C. F. McFadden and A. J. Gellman, 1998, “Metallic Friction: The Effect of Molecular Adsorbates,” Surface Science, 409, pp. 171–182.
[50]G. He, M. H. Müser and M. O. Robbins, 1999, “Adsorbed Layers and the Origin of Static Friction”, Science, 284, pp. 1650–1652.
[51]M. Chandross, C. D. Lorenz, M. J. Stevens and G. S. Grest, 2008, “Simulations of Nanotribology with Realistic Probe Tip Models,” Langmuir, 24, pp. 1240–1246.
[52]何怡帆,高世平,2001,“我國奈米科技研究之規劃與推動概況”,自然科學簡訊,第十三卷第四期,pp. 125–129.[53]T. Inamura, H. Suzuki and N. Takezawa, 1991, “Cutting Experiments in A Computer Using Atomic Models of A Copper Crystal and A Diamond Tool,” Int. J. Japan Soc. Prec. Eng., 25, pp. 231.
[54]Y. R. Jeng and C. M. Tan, 2002, “Computer Simulation of Tension Experiments of A Thin Film Using An Atomic Model,” Phys. Rev. B, 65, pp. 174107(1–7).
[55]Y. R. Jeng and C. M. Tan, 2004, “Theoretical Study of Dislocation Emission Around A Nanoindentation Using A Static Atomistic Model,” Phys. Rev. B., 69, pp. 104109.
[56]Y. R. Jeng and C. M. Tan, 2004, “Study of Nanoindentation Using FEM Atomic Model,” ASME J. Tribol., 126, pp. 767–774.
[57]N. Metropolis, A.W. Resenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, 1953, “Equation of State Calculations by Fast Computing Machines,” J. Chem. Phys., 21, pp.1087–1092.
[58]J. H. Irving and J. G. Kirkwood, 1950, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics,” J. Chem. Phys., 18, pp. 817–829.
[59]J. E. Lennard–Jones, 1924, “The Determination of Molecular Fields: From the Variation of the Viscosity of A Gas with Temperature,” Proc. R. Soc. Lond., A106, pp. 441–453.
[60]Don E. Harrison, Jr., 1981, “A Molecular Dynamics Simulation Study of the Influence of the Ion–atom Potential Function upon Sputtering,” J Appl. Phys., 52, pp. 1499–1508.
[61]M. Born and J. E. Mayer, 1932, “The Lattice Theory of Ion Crystals,” Zeitschrift fuer Physik, Phys., 75, pp. 1–18.
[62]R. A. Johnson, 1987, “Analytic Nearest–Neighbor Model for FCC Metals,” Phys. Rev. B, 37, pp. 3924–3931.
[63]P. Heino, H. Hakkinen and K. Kaski, 1998, “Molecular Dynamics Study of Copper with Defects under Strain,” Phys. Rev. B, 58, pp. 641–652.
[64]J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov and S. Yip, 1998, “Interatomic Potential for Silicon Defects and Disordered Phase,” Phys. Rev. B, 58, pp. 2539–2550.
[65]M. Kroger, W. Loose and S. Hess, 1993, “Structural Changes and Rheology of Polymer Melts via Nonequilibrium Molecular Dynamics,” J Rheol., 37, pp. 1057–1079.
[66]陳家貞,2002,”利用分子動力學探討高分子與生化流體之流變性質”,國立中正大學 (碩士論文)[67]L. Verlet, 1967, “Computer ‘experiments’ on Classical Fluids I, Thermodynamical Properties of Lennard–Jones Molecules,” Phys. Rev, 159, pp. 98–103.
[68]L. Verlet, 1968, “Computer ‘experiments’ on Classical Fluids II, Equilibrium Correlation Function,” Phys. Rev, 165, pp. 201–214.
[69]B. Quentrec and C. Brot, 1975, “New Method for Searching for Neighbors in Molecular Dynamics Computations,” J. Comp. Phys. 13, pp. 430–432.
[70]M. A. Crisfield, 1997, Non–linear Finite Element Analysis of Solids and Structures, John Wiley & Sons, pp. 586–587. (Book)
[71]T. Inamura, N. Takezawa and Y. Kumaki, 1933, “Mechanics and Energy Dissipation in Nanoscale Cutting”, Ann. CIRP, 42, pp. 79–82.
[72]W. Sekkal, H. Aourag and M. Certier, 1998, “Molecular Dynamics Simulations of Uniaxial and Hydrostatic Compression of C70 in the Disordered Phase,” Comput. Mater. Sci., 9, pp. 295–302.
[73]D. Hull and D. J. Bacon, 2001, Introduction to Dislocations, Butterworth–Heinemann. (Book)
[74]C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, 1998, “Dislocation Nucleation and Defect Structure during Surface Indentation,” Phys. Rev. B, 58, pp. 11085–11088.
[75]J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton and S. M. Foiles, 2001, “Surface Step Effects on Nanoindentation,” Phys. Rev. Lett., 87, pp. 165507.
[76]F. P. Bowden and J. E. Young, 1951, “Friction of Clean Metals and the Influence of Adsorbed Films,” Proc. R. Soc. London, Ser. A, 208, pp. 311–325.
[77]Yeau-Ren Jeng and Shin-Rung Peng, 2009, “Investigation into the Lateral Junction Growth of Single Asperity Contact Using Static Atomistic Simulations,” Appl. Phys. Lett., 94, pp. 163103.
[78]C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, 1987, “Atomic–Scale Friction of a Tungsten Tip on a Graphite Surface,” Phys. Rev. Lett., 59, pp. 1942–1945.
[79]J. Shimizu, H. Eda, M. Yoritsune and E. Ohmura, 1998, “Molecular Dynamics Simulation of Friction on the Atomic Scale,” Nanotechnology, 9, pp. 118–123.
[80]B. Li, P. C. Clapp, J. A. Rifkin and X. M. Zhang, 2001, “Molecular Dynamics Simulation of Stick–Slip,” J. Appl. Phys., 90, pp. 3090–3094.
[81]A. Socoliuc, R. Bennewitz, E. Gnecco and E. Meyer, 2004, “Transition from Stick–Slip to Continuous Sliding in Atomic Friction: Entering a New Regime of Ultra–Low Friction,” Phys. Rev. Lett., 92, pp. 134301.
[82]D. Mulliah, S. D. Kenny, and R. Smith, 2004, “Modeling of Stick–Slip Phenomena Using Molecular Dynamics,” Phys. Rev. B, 69, pp. 205407.
[83]G. Amontons, 1699, Mémoires de ľ Académie Royale A, pp. 257–282.
[84]U. D. Schwarz, W. Allers, G. Gensterblum, and R. Wiesendanger, 1995, “Low–load Friction Behavior of Epitaxial C60 Monolayers under Hertzian Contact,” Phys. Rev. B 52, pp. 14976–14984.
[85]R.W., Carpick, D.F., Ogletree, and M., Salmeron, 1997, “Lateral Stiffness: A New Nanomechanical Measurement for the Determination of Shear Strengths with Friction Force Microscopy,” Appl. Phys. Lett., 70, pp. 1548.
[86]I. Etsion, and M. Amit, 1993, “The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces,” ASME J. Tribol., 115, pp. 406–410.
[87]D. I. Kim, H. S. Ahn and D. H. Choi, 2004, “Effect of Surface Hydrophilicity and Water Vapor Pressure on the Interfacial Shear Strength of Adsorbed Water Layer,” Appl. Phys. Lett., 84, pp. 1919.