跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程群傑
研究生(外文):Chun-chieh cheng
論文名稱:鋁基複合材料摩擦攪拌銲道特性與銲合機理分析
論文名稱(外文):Characterization of Friction Stir Weld of Aluminum Matrix Composites and Analysis of Welding Mechanisms
指導教授:敖仲寧敖仲寧引用關係
指導教授(外文):Jong-ning Aoh
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:130
中文關鍵詞:刀具摩耗摩擦攪拌銲接顆粒強化鋁基複合材料攪拌區顯微結構
外文關鍵詞:Friction stir weldingprobe wearmicrostructure of stirred zoneparticulate-reinforced metal matrix composites
相關次數:
  • 被引用被引用:8
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
  氧化鋁顆粒強化鋁合金是質輕且強度高的金屬基複合材料,在使用高強度輕量結構之航太元件中已有應用。而利用摩擦攪拌銲接合氧化鋁顆粒強化複合材料,不但在工業上未見,在研究文獻上亦甚為有限,是極具潛力的研究課題。金屬基材中的顆粒可能有助於提昇接合後銲道強度,但現有Al2O3強化之鋁合金複材卻有可能因顆粒與基地結合性不佳而使得銲後強度與疲勞性質下降,因此本研究才以針對顆粒強化金屬基複合材料進行摩擦攪拌銲接特性探討。
  本研究利用摩擦攪拌銲接技術,分別對於鋁基複材Al2O3之體積百分比為10% , 15% 及20%板材進行FSW接合技術探討,並改變刀具進給速率及不同體積百分比之Al2O3然後利用銲道金相分析、TEM觀察與機械性質測試,探討上述參數對鋁基複材銲道顯微組織與機械性質的影響。
  研究結果顯示,銲道的硬度大於母材的硬度值,從顯微結構看到銲道晶粒明顯細化,並由於洋蔥環環狀區有細小晶粒使得硬度最高,另外進給速率逐漸增加至2.37mm/s時硬度值最高,在進給速率高於2.37mm/s後均呈現硬度下降的趨勢。在拉伸強度方面,拉伸試片斷裂面皆在母材區,拉伸強度與母材拉伸強度相近。鋁基複合材料母材晶粒內分佈黑色條狀的差排糾結,經過攪拌銲接後明顯產生晶粒細化,晶粒差排下降。攪拌刀具在銲接鋁基複材過程中,刀具磨耗量與刀具轉速成正比關係,與刀具進給速率成反比關係。鋁材基地裡強化顆粒體積百分比的提升,對攪拌刀具磨耗程度相對地增加。
Particulate-reinforced metal matrix composite Al/Al2O3p is a light weighted high strength composite material developed for light weight and high strength applications. Welding of Al/Al2O3p has always been a problem due to melting and solidification resulting in clustering of Al2O3 powder. Friction Stir Welding(FSW) will be a potentially appropriate process for joining Al/Al2O3p composites. The objective of this investigation is to further and to enhance the strength of weldment and to develop the FSW process for this composite for light weight high strength structural applications.
In this investigation, the friction stir welding was applied to butt on Al2O3 Particulate-reinforced metal matrix composite. The material used was a particulate-reinforced Al2O3/6061 aluminum alloy with 10%, 15% and 20% volume fraction of Al2O3 powder. Microstructural (optical, scanning electron and transition electron microscopy) observation and mechanical evaluation(hardness and tensile tests) were performed to explored the relationship between the characteristics of microstructure, the flow pattern and mechanical properties.
The results show that the hardness of the stirred zone was higher than that of the base material. Due to fine-grain microstructure within stirred zone. The highest hardness reached in stirred zone at traverse speed 2.37mm/s, higher traverse speed resulted in decrease of hardness. The tensile strength of friction stir welds was similar to that of the base material. The TEM images reveal that lower dislocation density was observed in the recrystallized fine-grained microstructure of stirred zone. The probe wear during FSW process increased with increasing rotation speed of tool and the decreased with increasing traverse speed of tool. Higher volume fraction of Al2O3 powder resulted in the higher probe wear.
摘 要 I
Abstract II
致 謝 III
目 錄 IV
圖目錄 VI
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 摩擦攪拌銲接製程 2
1-2-1 摩擦攪拌銲接介紹 2
1-2-2 摩擦攪拌銲接銲道橫截面 4
1-2-3 摩擦攪拌銲接製程參數 7
第二章 文獻回顧與研究動機 9
2-1 複合材料 9
2-2 金屬基複合材料 11
2-3 摩擦攪拌銲接製程運用於金屬基複合材料 12
2-4 摩擦攪拌銲道材料流動性行為 17
2-5 摩擦攪拌銲道顯微結構 19
2-6 動態再結晶機制 22
2-7 摩擦攪拌銲接銲道機械性質 24
2-8 鋁基複材摩擦攪拌銲接之刀具磨耗相關研究 26
2-9 文獻歸納 28
2-10 研究動機與目的 30
第三章 研究方法與流程 32
3-1 研究流程 32
3-2 實驗試片 34
3-3 實驗刀具 35
3-4 摩擦攪拌銲接製程設備 37
3-5 摩擦攪拌銲接夾治具的設計與製作 38
3-6 後處理製程分析設備 39
第四章 結果與討論 41
4-1 銲道表面觀察 41
4-2 鋁基複材銲道顯微結構 47
4-2-1 鋁基複材銲道橫截面金相顯微結構 47
4-2-2 鋁基複合材料摩擦攪拌銲接銲道TEM觀察 69
4-3摩擦攪拌銲接銲道機械性質 85
4-3-1 銲道硬度測試 85
4-3-2 拉伸試驗 95
4-3-3 拉伸試驗斷面分析 101
4-4刀具磨耗 108
4-4-1刀具磨耗量與實驗參數之關係 108
4-4-2刀具磨耗量與顆粒百分比之關係 109
4-4-3刀具磨耗情形SEM觀察與表面EDS分析 110
4-5 銲接後熱處理 116
第五章 結論與未來方向 120
5-1 結論 120
5-2 未來方向 122
參考文獻 123
[1]D.B. Miracle, “Metal matrix composites – From science to technological significance”, Composites Science and Technology, Vol. 65, pp. 2526–2540, 2005.
[2]K. Kumar, and Satish V. Kailas, “The role of friction stir welding tool on material flow and weld formation”, Mater. Sci. Eng. Vol. 485, pp. 367-374
[3]W.M. Thomas, E.D. Nicholas and J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes. G.B. Patent Application No 9125978.8; Dec 1991, U.S. Patent No. 5360317, Oct. 1995.
[4]M. Guerraa, C. Schmidta, J.C. McClurea, L.E. Murra, A.C. Nunesb, “Flow patterns during friction stir welding”, Materials Characterization, 49, pp 95-101, 2003.
[5]J.C. McClure, T. Tang, L.E. Murr, X. Guo, and Z. Feng, "A Thermal Model of Friction Stir Welding," Proceedings of the 5th International Conference on Trends in Welding Research, Pine Mountain, GA, June 1–5, pp. 590–595, 1998.
[6]C.J. Dawes, E.J.R. Spurgin and D.G. Staines, “Friction stir welding aluminum alloy 5083-increased welding speed”, Aug. 1999, TWI Report.
[7]W.M. Thomas, E.D. Nicholas, J.C. Needham, M.C. Murch, P.Temple-Smith and C.J. Dawes (TWI), ”Improvements relating to friction welding”, European Patent Specification 0615480 B1.
[8]W.M. Thomas, P.L. Threadgill and E.D. Nicholas, “The feasibility of friction stir welding steel”, Science and Technology of Welding and Joining, Vol. 4, No. 6, pp 365-372, 1999.
[9]C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling and C.C. Bampton, “Effect of friction stir welding on microstructure of 7075 aluminum”, Scripta Mater, Vol. 36, No. 1, pp. 69-75, 1997.
[10]G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, F.R. Vega, “Microstructural aspects of the friction stir welding on microstructure of 7075 aluminum”, Scripta Materialia, Vol. 37, No.3, pp. 355-361, 1997.
[11]K.V. Jata and S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys”, Scripta Materialia, Vol. 43, No. 8 pp. 743-749, 2000.
[12]S. Benavides, Y. Li, L.E. Murr, D. Brown and J.C. McClure, “Low-temperature friction stir welding of 2024 aluminum”, Scripta Materialia, Vol. 41, pp. 809-815, 1999.
[13]R.W. Fonda, J.F. Bingert and K.J. Colligan, “Development of grain structure during friction stir welding”, Scripta Materialia, Vol. 51, pp. 243-248, 2004.
[14]H.G. Salem, “Friction stir weld evolution of dynamically recrystallized AA 2095 weldments”, Scripta Materialia, Vol. 49, pp. 1103–1110, 2003.
[15]S.H.C. Park, Y.S. Sato and H. Kokawa, “Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test”, Scripta Materialia, Vol. 49, pp. 161-166, 2003.
[16]R.S. Mishra and Z.Y. Ma, “Friction stir welding and processing, Materials Science and Engineering”, Vol. 50, pp. 1-78, 2005.
[17]L.A.C. De Filippis and P. Cavaliere, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy”, Materials and Design, Vol. 28, pp. 1124–1129, 2007.
[18]M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr and A.C. Nunes, “Flow patterns during friction stir welding”, Materials Characterization, Vol. 49, pp. 95-101, 2003.
[19]W.J. Arbegast, Modeling Friction Stir Joining as a Metalworking Process, Published in Hot Deformation of Aluminum Alloys III, Z. Jin, ed., TMS (The Minerals, Metals, and Materials Society), 2003.
[20]K. Colligan, “Material flow behavior during friction stir welding of aluminum”, Welding Journal , pp. 229-237, 1999.
[21]張維麟, “6061鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究”, 國立中正大學機械工程研究所碩士論文, 2005.
[22]G.R. Bradley and M.N. James, “Geometry and Microstructure of Metal Inert Gas and Friction Stir Welded AL Alloy 5383-H321”, October 2000.
[23]Y.J. Kwon, I. Shigematsu and N. Saito, “Mechanical properties of fine-grained aluminum alloy produced by friction stir process”, Scripta Materialia, Vol. 49, pp. 785-789, 2003.
[24]M. Peel, A. Steuwer, M. Preuss and P.J. Withers, “Microstructure mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds”, Acta Materialia, Vol. 51, pp. 4791-4801, 2003.
[25]M.W. Mahoney, C.G. Rhodes, J.C. Flintoff, R.A. Spurling, W.H. Bingel, “Properties of friction-stir-welded 7050 T651 Aluminum”, Mater. Trans. Vol. 29A, pp. 1955, 1998.
[26]K.N. Krishnan, “On the formation of onion rings in friction stir welds”, Materials Science and Engineering, Vol. A327, pp. 246-251, 2002.
[27]L. Ying, L.E. Murr and J.C. McClure, “Solid-State flow visualization in the friction-stir welding of 2024 Al To 6061 Al”, Scripta Materialia, Vol. 40, pp. 1041-1046, 1999.
[28]G.J. Fernandez and L.E. Murr, “Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite”, Materials Characterization, Vol. 52, pp. 65-75, 2004.
[29]W.M. Thomas, “Friction stir welding and related friction process characteristics”, Presented at INALCO ''98, 7th International Conference on Joints in Aluminum, Abington, Cambridge, UK, 15-17 April 1998.
[30]彭嘉肇, “鋁基複合材料疲勞及磨耗特性之研究”國立中央大學機械工程研究所博士論文, 1993.
[31]D. Storjohann, S.S. Babu, S. A. David and P. Sklad,” Friction Stir Welding of Aluminum Metal Matrix Composites”,4th International symposium on Friction Stir Welding, 2003, Utah, USA.
[32]R.S. Mishra, Z.Y. Ma and I. Charit, “Friction stir processing: a novel technique for fabrication of surface composite”, Materials Science and Engineering, Vol. A341, pp. 307-310, 2003.
[33]L.M. Marzoli, A.v. Strombeck, J.F. Dos Santos, C. Gambaro and L.M. Volpone, ”Friction stir welding of an AA6061/Al2O3/20p reinforced alloy” , Composites Science and Technology, Vol. 66, pp. 363–371, 2006.
[34]G. Liu, L.E. Murr, C-S Niou, J.C. McClure and F.R. Vega, “Microstrctural aspects of the friction-stir welding of 6061-T6 aluminum”, Scripta Materialia Vol. 37, No.3, pp 355-361, 1997.
[35]L. Ceschini , I. Boromei , G. Minak , A. Morri and F. Tarterini , “ Microstructure, tensile and fatigue properties of AA6061/20 vol.% Al2O3p friction stir welded joints”, Composites: Part A 38, pp. 1200–1210, 2007.
[36]L. Ceschini , I. Boromei , G. Minak , A. Morri and F. Tarterini, “ Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite”, Composites Science and Technology Vol. 67, pp. 605–615, 2007.
[37]M. Amirizad, A.H. Kokabi , M. Abbasi Gharacheh , R. Sarrafi, B. Shalchi and M. Azizieh, “Evaluation of microstructure and mechanical properties in friction stir welded A356+15%SiCp cast composite”, Materials Letters, Vol. 60, pp. 565–568, 2006.
[38]林鼎崴, “鋁合金摩擦攪拌銲接的銲道特性與銲合機理分析”, 國立中正大學機械工程研究所碩士論文, 2006.
[39]徐千富, “顆粒強化之鋁合金摩擦攪拌銲道特性分析研究”, 國立中正大學機械工程研究所碩士論文, 2007.
[40]黃金發, “Al2O3顆粒強化鋁基複合材料摩擦攪拌銲道特性分析” , 國立中正大學機械工程研究所碩士論文, 2008.
[41]Z.W. Chen, T. Pasang and Y. Qi, “Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O ”, Materials Science and Engineering, Vol. A 474, pp. 312–316, 2008.
[42]Z.W. Chen, and S. Cui, “On the forming mechanism of banded structures in aluminium alloy friction stir welds”, Scripta Materialia, Vol. 58, pp. 417–420, 2008.
[43]H.N.B. Schmidt, T.L. Dickerson and J.H. Hattel, “Material flow in butt friction stir welds in AA2024-T3”, Acta Materialia, Vol. 54, pp. 1199-1209, 2006.
[44]R. Nandan, G.G. Roy, T.J. Lienert and T. Debroy, “Three-dimensional heat and material flow during friction stir welding of mild steel”, Acta Materialia, Vol. 55, pp. 883-895, 2007.
[45]R.W. Fonda, J.F. Bingert and K.J. Colligan, “Development of grain structure during friction stir welding”, Scripta Materialia, Vol. 51, pp. 243–248, 2004.
[46]P.B. Prangnell and C.P. Heason, “Grain structure formation during friction stir welding observed by the ‘stop action technique’”, Acta Materialia Vol. 53, pp. 3179–3192, 2005.
[47]M.A. Sutton , B. Yang, A.P. Reynolds and R. Taylor, “Microstructural studies of friction stir welds in 2024-T3 aluminum”, Materials Science and Engineering, Vol. 323, pp. 160–166, 2002.
[48]Z.Y. Ma, R.S. Mishra and M.W. Mahoney, “Superplastic deformation behaviour of friction stir processed 7075Al alloy”, Acta Materialia, Vol. 50, pp. 4419-4430, 2002.
[49]G. Liu, L.E. Murr, CS Niou, J.C. McClure and F.R. Vega, “ Microstructural aspects of the friction-stir welding of 6061-T6 aluminum ” , Scripta Materialia , Vol. 37, No. 3, pp. 355-361, 1997.
[50]W. Woo, L. Balogh, T. Ungár, H. Chooa and Z. Feng, “Grain structure and dislocation density measurements in a friction-stir welded aluminum alloy using X-ray peak profile analysis”, Materials Science and Engineering, A 498, pp. 308–313, 2008.
[51]M. Cabibbo, H.J. McQueen, E. Evangelista, S. Spigarelli, M. Di Paola and A. Falchero,“Microstructure and mechanical property studies of AA6056 friction stir welded plate”, Materials Science and Engineering, A 460–461, pp. 86–94, 2007.
[52]W.M. Thomas, E.D. Nicholas and S.D. Smith, “Friction Stir Welding - tool developments”, TWI Ltd, Granta Park, Great Abington, Cambridge CB1 6AL, United Kingdom.
[53]P.A. Colegrove and P.L. Threadgill, “Development of the TrivexTM friction stir welding tool”, TWI Ltd, Granta Park, Great Abington, Cambridge CB1 6AL, United Kingdom.
[54]H.J. McQueen and M.E. Kassner, “Comments on a model of continuous dynamic recrystallization proposed for aluminum”, Scripta Materialia, Vol. 51, pp. 461-465, 2004.
[55]K.V. Jata and S.L. Semiatin, “Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys”, Scripta materialia, Vol. 43, pp. 743-749, 2000.
[56]J. Q. Su, T.W. Nelson, R. Mishra and M. Mahoney, “Microstructural investigation of friction stir welded 7050-T651 aluminum”, Acta Materialia, Vol. 51, pp. 713-729, 2003.
[57]J. Q. Su , T.W. Nelson and C.J. Sterling, “A new route to bulk nanocrystalline materials”, Journal of Materials Research, Vol. 18, pp. 1757-1760, 2003.
[58]J.Q. Su, T.W. Nelson and C.J. Sterling, “Microstructure evolution during FSW/FSP of high strength aluminum alloys”, Materials Science and Engineering, Vol. A405, pp. 277-286, 2005.
[59]Y.J. Kwon, N. Saito and I. Shigematsu, Journal of Materials Science Letters 21, Oct 1, pp. 1473-1476, 2002.
[60]胡哲明, “摩擦攪拌製程之應變率對奈米氧化鋁粉均勻分佈與機械性質的影響”, 國立中山大學材料工程研究所碩士論文, 2004.
[61]Y.S. Sato, F. Yamashita, Y. Sugiura, S.H.C. Park and H. Kokawa, “FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminum alloy”, Scripta Materialia, Vol. 50, pp. 365-369, 2004.
[62]Y.S. Sato, H. Takauchi, S.H.C. Pard and H. Kokawa, “Characteristics of the kissing-bond in friction stir welded Al alloy 1050”, Meterials Science and Engineering, Vol. A405, pp. 333-338, 2005.
[63]M.J. Jone, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux and J.H. Driver, “Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy”, Scripta Materialia, Vol. 52, pp. 693-697, 2005.
[64]S.W. Kallee, “Friction stir welding - how to weld aluminum without melting it”, TWI Ltd, Granta Park, Great Abington, Cambridge CB1 6AL, UK.
[65]R.A. Prado, L.E. Murr, D.J. Shindo, and K.F. Soto, “Tool wear in the friction-stir welding of aluminum alloy 6061+20%Al2O3:a preliminary study”,Scripta Materialia, Vol. 45, pp.75-80, 2001.
[66]G.J. Fernandez and L.E. Murr, “Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite ”, Materials Characterization, Vol. 52, pp. 65– 75, 2004.
[67]K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints”, Journal of Materials Science, Vol. 37 pp. 473– 480, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊