跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳怡霖
研究生(外文):Yi-Lin Wu
論文名稱:可撓曲式基板撓曲研究之光電與機械性質分析
論文名稱(外文):Analysis on Optical/Electrical and Mechanical Properties of Bending Investigation of Flexible Substrate
指導教授:鄭友仁
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:145
中文關鍵詞:可撓曲式顯示器可撓曲式基板PEDOT機械性質光電性質
外文關鍵詞:Optical/Electrical propertyMechanical propertyFlexible substrateFlexible displayPEDOTITOBending
相關次數:
  • 被引用被引用:0
  • 點閱點閱:626
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
可撓曲式顯示器是目前熱門的新產品,具有可彎曲,耐衝擊,可呈現多角度視覺效果等優勢。但是研究出來的產品都為有限度的撓曲,同時撓曲後更破壞了基板上導電材料的運作,可能導致元件效率下降,這是可撓曲式顯示器中無法商品化的重要瓶頸。但是在相關的文獻當中,僅說明PEDOT:PSS和ITO之間撓曲後的破壞現象。
為了探討塑膠基板在撓曲過後的情形,本文對塑膠基板進行一連串相關性質測試,主要用PEDOT:PSS之外還用許多發光材料和元件去測試撓曲基板之後的結果,我門使用奈米級下的原子力顯微鏡、奈米壓痕技術、四點探針與紫外光吸收光譜儀去觀察量測,在不同阻抗值的基板,進行不同撓曲次數之後,其光電性質、表面形貌及奈米機械性質間的關係,進而了解撓曲對於光電材料所造成的損傷情況、原因及改善方法。最後再做可撓曲式的發光元件,同樣的將針對不同材料進行撓曲,之後再量測其光電效率,觀察撓曲對於元件的影響與破壞。本論文所建立的完整實驗流程將完整分析光電材料與元件在經過撓曲之後的變化,可為未來的相關研究提供一個重要的資訊。
Flexible display is the new product which is going to be researched and developed in the future, because it can curve, bear the impact, and present superiority of visual effect for multiple perspectives. In recent years, there are many related research about flexible display, but in the created flexible display which is unable to be bended excessively. Besides simultaneously bending it even destroys the operation of conducting material operation on the foundation plate, and may lower the efficiency of the part. That is the big barrier which the flexible display is cannot break through. However, in the related papers, they only explains the condition between PEDOT:PSS and ITO destruction after bending.
Therefore, in order to discuss the real condition of the plastic substrate after bending .This study will thoroughly carry on a series of related tests for the plastic substrate. In addition to PEDOT:PSS cotting on the plastic substrate also uses the part made by photoelectric materals to test and gets the result after bending. We also use the nanometer level atomic force microscope, the nano-indentation technology, four point probe and ultra-violet absorption spectroscopy to observe the gauge with the different resistance value foundation plate carries on different times of bending. We discuss the connection among the photoelectricity properties, surface morphology and nanometer level mechanical property. Then understand the damage condition reason and improvement method of bending photoelectric material resulted form bending. Finally will do the part, and aim at the different materials to carry on bendingl, afterwards gauge the photoelectric efficiency, and observe the influence and destruction of the part by the bending. The complete experiment process established by this study will utterly analyze the change after bending between photoelectric material and the part, and it can provide important information for correlated research in the future.
目錄
目錄………………………………………………………………..............IV
Table………………………………………………………………….……VI
圖目錄……………………………………………………………………VII.

第一章 緒論………………………………………………………………1
1-1 前言………………………………………………………………….1
1-2 可撓曲式顯示器及塑膠基板介紹…..………………………...........4
1-3 研究動機..…………………………………………………………..12

第二章 理論基礎………………………………………………………...17
2-1 奈米壓痕硬度與彈性模數量測理論………………………….…...17
2-2 原子力顯微鏡 ( Atomic Force Microscope,AFM )………..……27
2-3 紫外光吸收光譜簡介(Ultra-Violet Absorption Spectroscopy)…....30
2-4 四點探針簡介(Four-Point Probe)………………………………….32
2-5 撓曲的定義…....................................................................................35

第三章 實驗方法………………………………………………………...42
3-1 實驗設計與流程介紹……………………………………………...42
3-2 實驗儀器與設備………………………………………….………..45
3-3 實驗藥品與材料…………………………………………………... 48
3-4 試片製作……………………………………………………………50
3-5 發光元件製作………………………………………………………52

第四章 結果討論………………………………………………………..60
4-1 紫外光吸收光譜量測分析…………………………………………62
4-2 四點探針量測分析………………………………………………....70
4-3 原子力顯微鏡表面形貌量測………………………………………73
4-4 奈米機械性質壓痕量測……………………………………………82
4-5 表面粗度儀量測分析………………………………………………86
4-6 表面吸附力分析……………………………………………………88
4-7 破壞表面分析………………………………………………………90
4-8 塑膠基板製作發光元件實驗分析…………………………………91
4-9 結論………………………………………………………………...95


第五章 未來展望……………………………………………………….141

參考文獻…………………………….………………………………. …..142










Table

Table 1 (a) ITO塑膠基板電阻值14、30及60ohm/sq撓曲表面形貌表
格…………………………………………………………......96
Table 1 (b) PEDOT:PSS鍍於塑膠基板電阻值14、30及60 ohm/sq撓曲表面形貌表格…………………………………………….….97
Table 1 (c) PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠
基板電阻值14、30及60 ohm/sq撓曲表面形貌表格…….98
Table 2 (a) ITO塑膠基板電阻值14 ohm/sq奈米壓痕測試表…………99
Table 2 (b) ITO塑膠基板電阻值30 ohm/sq奈米壓痕測試表…………99
Table 2 (c) ITO塑膠基板電阻值60 ohm/sq奈米壓痕測試表…………99
Table 2 (d) 塑膠基板奈米壓痕測試表…………………………………100
Table 2 (e) PEDOT:PSS鍍於塑膠基板電阻值14 ohm/sq奈米壓痕測
試表…………………………………………………….……100
Table 2 (f) PEDOT:PSS鍍於塑膠基板電阻值30 ohm/sq奈米壓痕測試表………………………………………………………...……100
Table 2 (g) PEDOT:PSS鍍於塑膠基板電阻值60 ohm/sq奈米壓痕測試表………………………………………………………..…….101
Table 2 (h) PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠
基板電阻值14 ohm/sq奈米壓痕測試表……………..…..…101
Table 2 (i) PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠
基板電阻值30 ohm/sq奈米壓痕測試表…………………....101
Table 2 (j) PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠
基板電阻值60 ohm/sq奈米壓痕測試表…………………….102
Table 3 表面膜厚量測表………………………………………………..102


























圖目錄

Fig.1-1 UDC可撓曲有機發光二極體元件…..........................................15
Fig.1-2 電泳顯示器作動原理圖………………………………………...15
Fig.1-3-1塑膠基板破壞裂痕現象圖……………………………………..16
Fig.1-3-2玻璃基板與塑膠基板楊氏模數量測圖………………………..16
Fig.1-3-3塑膠基板撓曲之後應力模擬圖………………………………..16
Fig.2-1 壓痕量測時壓痕器負載--卸載與試件表面關係圖……………36
Fig.2-2 壓痕量測之負載與位移曲線關係圖…………………………..36
Fig.2-3 Nano-Indentation 主要組成結構圖……………………………37
Fig.2-4 Nano-Indenter 之壓痕器結構圖……………………………….37
Fig.2-5 轉換器之結構示意圖…………………………………………..38
Fig.2-6 奈米壓痕量測儀 ( Triboscope ) ……………………………….38
Fig.2-7 原子力顯微鏡之工作原理示意圖……………………………...39
Fig.2-8 原子力顯微鏡 (Atomic Force Microscope,AFM) …………..39
Fig.2-9 紫外光吸收光譜之紅、藍位移圖示…………………………...40
Fig.2-10 四點探針原理示意圖…………………………………………...40
Fig.2-11 四點探針量測器(Four-Point Probe) ……………………………41
Fig.3-1-1自製撓曲基板機構……………………………………………...56
Fig.3-1-2發光材料綠光(PF-G)及PEDOT元件示意圖…………………..56
Fig.3-2-1表面粗度度儀(Alpha-Step Profilometer) ………………………57
Fig.3-2-2紫外光吸收光譜儀 (Ultra-Violet Absorption Spectroscopy) …57
Fig.3-3-1 PEDOT: PSS (poly[3,4-ethylenedioxythiophene]:
poly[styrenesulfonate]) …………………………………………58
Fig.3-3-2 Dow Chemical GreenB………….………………………………58
Fig.3-3-3甲苯(Toluene) …………………………………………………..59
Fig.3-5-1發光元件結構圖………….……………………………………..59
Fig.4-1-1塑膠基板電阻值14 ohm/sq 之穿透光譜……………………..103
Fig.4-1-2塑膠基板電阻值14 ohm/sq 之反射光譜…………………..…103
Fig.4-1-3塑膠基板電阻值30 ohm/sq 之穿透光譜……………………. 104
Fig.4-1-4塑膠基板電阻值30 ohm/sq 之反射光譜…………………..…104
Fig.4-1-5塑膠基板電阻值60 ohm/sq 之穿透光譜…………………..…105
Fig.4-1-6塑膠基板電阻值60 ohm/sq 之反射光譜……………………..105
Fig.4-1-7 PEDOT:PSS鍍於ITO基板電阻值14 ohm/sq之穿透光譜106
Fig.4-1-8 PEDOT:PSS鍍於ITO基板電阻值14 ohm/sq之反射光譜106
Fig.4-1-9 PEDOT:PSS鍍於ITO基板電阻值30 ohm/sq之穿透光譜107
Fig.4-1-10 PEDOT:PSS鍍於ITO基板電阻值30 ohm/sq之反射光譜107
Fig.4-1-11 PEDOT:PSS鍍於ITO基板電阻值60 ohm/sq之穿透光譜108
Fig.4-1-12 PEDOT:PSS鍍於ITO基板電阻值60 ohm/sq之反射光譜108
Fig.4-1-13 PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值14 ohm/sq 之 穿透光譜…………………………..……109
Fig.4-1-14 PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值14 ohm/sq 之 反射光譜………………………………..109
Fig.4-1-15PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值30 ohm/sq 之 穿透光譜……………………………..…110
Fig.4-1-16 PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值30 ohm/sq 之 反射光譜…………………………..……110
Fig.4-1-17 PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值60 ohm/sq 之 穿透光譜……………………………..…111
Fig.4-1-18 PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值60 ohm/sq 之 反射光譜……………………………..…111
Fig.4-2-1 ITO塑膠基板電阻值14、30及60 ohm/sq撓曲0、200、
500及1000次之電阻值圖…………………………………….112
Fig.4-2-2 PEDOT:PSS鍍於ITO塑膠基板電阻值14、30及60
ohm/sq上撓曲0、200、500及1000次之電阻值圖…………112
Fig.4-2-3 PEDOT:PSS與Dow Chemical GreenB鍍於ITO塑膠基板電
阻值14、30及60 ohm/sq上撓曲0、200、500及1000次之電
阻值圖………………………………………………………...113
Fig.4-3-1 ITO塑膠基板電阻值14 ohm/sq撓曲0次相圖…………..…114
Fig.4-3-2 ITO塑膠基板電阻值14 ohm/sq撓曲500次相圖………..…114
Fig.4-3-3 ITO塑膠基板電阻值14 ohm/sq撓曲1000次相圖…………114
Fig. 4-3-4為ITO塑膠基板電阻值14 ohm/sq剖面示意圖……………115
Fig.4-3-5 ITO塑膠基板電阻值30 ohm/sq撓曲0次相圖……………..116
Fig.4-3-6 ITO塑膠基板電阻值30 ohm/sq撓曲500次相圖…………..116
Fig.4-3-7 ITO塑膠基板電阻值30 ohm/sq撓曲1000次相圖………….116
Fig. 4-3-8為ITO塑膠基板電阻值30 ohm/sq剖面示意圖…………….117
Fig.4-3-9 ITO塑膠基板電阻值60 ohm/sq撓曲0次相圖………………118
Fig.4-3-10 ITO塑膠基板電阻值60 ohm/sq撓曲500次相圖………….118
Fig.4-3-11 ITO塑膠基板電阻值60 ohm/sq撓曲1000次相圖…………118
Fig. 4-3-12為ITO塑膠基板電阻值60 ohm/sq剖面示意圖…………...119
Fig.4-3-13 PEDOT:PSS鍍於塑膠基板電阻值14 ohm/sq撓曲0次相圖
………………………………………………………………...120
Fig.4-3-14 PEDOT:PSS鍍於塑膠基板電阻值14 ohm/sq撓曲500次相圖
………………………………………………………………..120
Fig.4-3-15 PEDOT:PSS鍍於塑膠基板電阻值14 ohm/sq撓曲1000次相
圖……………………………………………………………..120
Fig. 4-3-16為PEDOT:PSS鍍於塑膠基板電阻值14 ohm/sq剖面示意
圖…………………………………………………………..…121
Fig.4-3-17 PEDOT:PSS鍍於塑膠基板電阻值30 ohm/sq撓曲0次相
圖……………………………………………………………..122
Fig.4-3-18 PEDOT:PSS鍍於塑膠基板電阻值30 ohm/sq撓曲500次相圖
………………………………………………………………..122
Fig.4-3-19 PEDOT:PSS鍍於塑膠基板電阻值30 ohm/sq撓曲1000次相
圖………………………………………………………..……122
Fig.4-3-20 PEDOT:PSS鍍於塑膠基板電阻值30 ohm/sq剖面示意圖………………………………………………………….….123
Fig.4-3-21 PEDOT:PSS鍍於塑膠基板電阻值60 ohm/sq撓曲0次相
圖…………………………………………………………..…124
Fig.4-3-22 PEDOT:PSS鍍於塑膠基板電阻值60 ohm/sq撓曲500次相圖
……………………………………………………………..…124
Fig.4-3-23 PEDOT:PSS鍍於塑膠基板電阻值60 ohm/sq撓曲1000次相
圖…………………………………………………………..…124
Fig.4-3-24 PEDOT:PSS鍍於塑膠基板電阻值60 ohm/sq剖面示意圖…………………………………………………...…………125
Fig.4-3-25 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值14 ohm/sq撓曲0次相圖………………………………….126
Fig.4-3-26 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值14 ohm/sq撓曲500次相圖……………………………….126
Fig.4-3-27 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值14 ohm/sq撓曲1000次相圖………………………………126
Fig. 4-3-28PEDOT:PSS與Dow ChemicaGreenB鍍於塑膠基板電阻值14 ohm/sq剖面示意圖………………………………………….127
Fig.4-3-29 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值30ohm/sq撓曲0次相圖…………………………………..128
Fig.4-3-30 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值30ohm/sq撓曲500次相圖………………………………..128
Fig.4-3-31 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值30ohm/sq撓曲1000次相圖………………………………128
Fig.4-3-32 PEDOT:PSS與Dow ChemicaGreenB鍍於塑膠基板電阻值30 ohm/sq剖面示意圖……………………………………..….129
Fig.4-3-33 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值60ohm/sq撓曲0次相圖…………………………………..130
Fig.4-3-34 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值60ohm/sq撓曲500次相圖………………………………..130
Fig.4-3-35 PEDOT:PSS與Dow ChemicaGreenB鍍於ITO塑膠基板電阻值60ohm/sq撓曲1000次相圖……………………………….130
Fig.4-3-36 PEDOT:PSS與Dow ChemicaGreenB鍍於塑膠基板電阻值60 ohm/sq剖面示意圖…………………………………………...131


Fig. 4-6-1為PEDOT表面吸附力正向力與時間關係圖………….…132
Fig. 4-6-2為PEDOT表面吸附力側向力與時間關係圖……….……132
Fig. 4-6-3為Dow ChemicaGreenB表面吸附力正向力與時間關係 圖……………………………………………………..……133
Fig. 4-6-4為Dow ChemicaGreenB表面吸附力側向力與時間關係圖…………………………………………..………………133
Fig. 4-7-5為PF分子經過撓曲之後滑移示意圖…………………….13
Fig. 4-8-1為ITO塑膠基板電阻值14 ohm/sq所製成之發光元件發光
效率圖………………………………………………….….136
Fig. 4-8-2為ITO塑膠基板電阻值14 ohm/sq所製成之發光元件QE效率圖……………………………………………………..136
Fig. 4-8-3為ITO塑膠基板電阻值30 ohm/sq所製成之發光元件發光
效率圖………………………………………………..……137
Fig. 4-8-4為ITO塑膠基板電阻值30 ohm/sq所製成之發光元件QE
效率圖……………..…………………………………....…137
Fig. 4-8-5為ITO塑膠基板電阻值60 ohm/sq所製成之發光元件發光效率圖………………………………………………..……138
Fig. 4-8-6為ITO塑膠基板電阻值60 ohm/sq所製成之發光元件QE效率圖………………………………………………..……138
Fig. 4-8-7為ITO塑膠基板電阻值30 ohm/sq所製成之發光元件...139
Fig. 4-8-8為ITO塑膠基板電阻值30 ohm/sq所製成之發光元件
ITO撓曲1000次電流14mA………………………………139
Fig. 4-8-9為ITO塑膠基板電阻值30 ohm/sq所製成之發光元件
PEDOT撓曲1000次電流17mA…………………………..140
Fig. 4-8-10為ITO塑膠基板電阻值30 ohm/sq所製成之發光元件
發光層撓曲1000次電流20mA……………………………140
1. Zachary J. Tonzetich Advisor: Richard Eisenberg, Ph.D.“Organic Light
Emitting Diodes,”(OLEDs) for General Illumination Update 2002
2. 簡金雄, 陳金鑫,“二十一世紀的明星產業-有機發光二極體平面顯示
器技術,”光電科技, 24, 78,2001
3. 鄭榮安, 陳金鑫,“瞻性OLED的展望“可撓曲式有機發光二極體之開發
現況,”電子與材料, 11, 37,2001
4. Jong-Hyun Ahn, Hoon-Sik Kim, Keon Jae Lee, Zhengtao Zhu,Etienne Mrnard. Ralph G. Nuzzo, and John A. Rogers,“High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,”IEEE ELECTRON DEVICE LETTERS, VOL. 27, VOL.27E,2006
5. Kimberly J.Allan, “Reel to Real: Prospects for Flexible Displays,” IEEE 0018-9219,2005
6. Hiroki Maeda, Masanao Matsuoka, Mitsutaka Nagae, Hiroyuki Honda,
Tomomi Suzuki, Ken-ichi Ogawa, and Hironori Kobayashi Dai Nippon
Printing Co., Ltd., Kashiwa, Chiba, Japan, “A 10in. Flexible Active-
-Matrix OTFT array for QR-LPD-Based Motion Picture Displays,”
314 • SID DIGEST,2008
7. Yoji Iwamoto, Katsuyuki Motai, Yasunori Naitou, Masaru Kadowaki,
and Koji Ichimura Research and Development Center, Dai Nippon
Printing Co., Ltd., 250-1, Wakashiba, Kashiwa-Shi, Chiba, 277-0871,
Japan, “Flexible Field-Sequential-Color FLCD Panels Driven by
poly-si TFTs,”319 • SID DIGEST,2008
8. Warren B. Jackson, Marcia Almanza-Workman, Alison Chaiken,
Robert A. Garcia, Albert Jeans, Ohseung Kwon, Hao Luo, Ping Mei,
Craig Perlov, Carl Taussig HP Labs, 1501 Page Mill Rd, Palo Alto,
CA, USA, “Invited Paper: Active-Matrix Backplanes Produced by
Roll-to-Roll Self-Aligned Imprint Lithography (SAIL), ”
322 • SID DIGEST,2008
9. Sonia Grego , Jay Lewis, Erik Vick, Dorota Temple, “A method to
evaluate mechanical performance of thin transparent films for flexible
displays,”Thin Solid Films 515 4745–4752,2005
10. Yves Leterrier, Albert Pinyol, Pierre Dumont1, Damien Gilliéron,
Vinodh Mewani, Jan-Anders Månson, “Invited Paper: Models and
Experiments of Mechanical Integrity for Flexible Displays,”
310 • SID DIGEST,2008
11. Y.Leterrier1, C. Fischer1,3, L. Médico1, F. Demarco1, J.-A. E.
Månson1, P. Bouten2, J. DeGoede2, J.A. Nairn3, “Mechanical
properties of transparent functional thin films for flexible displays,”
Society of Vacuum Coaters 505/856-7188 146th Annual,2003
12. Darran R. Cairns and Gregory P. Crawford,Member
,“Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays,”PROCEEDINGS OF THE IEEE, VOL. 93, NO. 8, AUGUST,2005
13. Ranjana Saha and William D.Nix, “Effect of substrate on the
determination of thin film mechanical properties by nanoindentation,”
Acta Mater, 50, pp. 23-38,2002
14. B.D.Fabes and W. C. Oliver, “ The determination of film hardness
from the composite response of film and substrate to nanometer scale
indentations,” J. Mater. Res., 7, pp. 3056,1992
15. Buckle H., “The Science of Hardness Testing and its Research.
Application,”American Society of Metals,Metals Park,Ohio,
pp. 453-491,1973
16. T. F. Page, W.C. Oliver and C.J. McHargue, “ The Unusual
Deformation Behaviour of Ceramic Crystals Subjected to Very Low
Load Indentations,”Journal of Materials Research, 7, pp. 450-473
,1992
17. S.P.Baker, “The Analysis of Depth-Sensing Indentation Data,”in
Thin Films: Stresses and Mechanical Properties IV, edited by P.H.
Townsend, J.E. Sanchez, T.P. Weihs, and P. Børgesen, Mat. Res. Soc.
Symp. Proc. 308, Materials Research Society, Pittsburgh, PA, pp. 209
,1993
18. D.J. Morrison and J.C. Moosbrugger, “ Effects of grain size on cyclic
plasticity and fatigue crack initiation in nickel,” Elsevier Science Int. J.
Fatigue Vol. 19, Supp. No. 1, pp. S51–S59, 1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top