跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:879a:e16d:38fe:36d8) 您好!臺灣時間:2024/12/13 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃釋緯
研究生(外文):Shih-Wei Huang
論文名稱:雙閘耦合與自動轉導匹配之電流再利用壓控振盪器分析與設計
論文名稱(外文):Analysis and Design of Double-Gate CouplingOscillator and Current-Reused VCO withAuto-Transconductance Matching Technique
指導教授:張盛富
指導教授(外文):Sheng-Fuh Chang
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:51
中文關鍵詞:振盪器壓控振盪器自動轉導匹配雙閘耦合
外文關鍵詞:VCOdouble-gate couplingauto-transconductance matchingoscillator
相關次數:
  • 被引用被引用:9
  • 點閱點閱:496
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩種振盪器架構,分別採用雙閘耦合技術之差動壓控振盪器與採用自動轉導匹配技術之電流再利用振盪器,設計於第四代行動通訊與WiMAX 頻帶之寬頻應用。在採用雙閘耦合技術的差動壓控振盪器方面,同時耦合電晶體閘極與基體,使等效轉導增大而降低?率消耗,並使用差動壓控壓抑共模雜訊。0.18-μm CMOS 振盪器晶片量測結果顯示,振盪頻率範圍為3.02 – 3.89 GHz,輸出?率為-4.1 dBm,於3.02 GHz 時,相位雜訊為-93 dBc/Hz@1 MHz offset,消耗必v為6 mW,優化指數(FOM)為-156.1。在採用自動轉導匹配技術的振盪器方面,將CMOS center-tapped(中央抽頭式)電感之訊號回授至交互耦合電晶體之源極退化電阻,使PMOS 與NMOS 之轉導值自動匹配而平衡振幅輸出。量測結果,振盪頻率範圍為2.93 – 3.62 GHz,輸出?率為-4.3 dBm,於2.93 GHz 時,相位雜訊為-112.8 dBc@1 MHz offset,輸出?率不平衡度於全頻段中約為8-9 %,?率消耗為1.95 mW,優化指數(FOM)為-179.4。
Two novel voltage-controlled oscillators (VCOs) are designed for the
fourth-generation and WiMAX applications, which are the differential VCO with
double-gate coupling (DGC-VCO) technique and the current-reused VCO with
auto-transconductance matching (ATM-VCO). In DGC-VCO, the gate and bulk of
transistor are coupled simultaneously for greater transconductance, leading to lower
power consumption. The VCO is implemented with 0.18-μm CMOS technology. The
measured tuning range is 3.02 to 3.89 GHz and the phase noise is -93 dBc/Hz at
1MHz offset from 3.02 GHz. The single-ended output power is -4.1 dBm with 6 mW
power consumption in VCO core. The figure of merit is -156.1 For ATM-VCO, the
signal, which is center-tapped from the tank inductor, is fed to the source degeneration
resistor such that the transconductances of PMOS and NMOS are automatically
matched. Therefore, the amplitude imbalance can be dramatically improved. The
measured tuning range is 2.93 to 3.62 GHz, where the amplitude imbalance is 8-9% .
The phase noise is -112.8 dBc/Hz at 1MHz offset from 2.93 GHz. The output power is
-4.3 dBm with 1.95 mW power consumption in VCO core. The figure of merit is
-179.4.
第一章 序論.................................................................................................................1
1.1 研究背景與動機..........................................................................................1
1.2 寬頻壓控振盪器..........................................................................................1
1.3 論文架構......................................................................................................2
第二章 CMOS VCO 相位雜訊分析.........................................................................3
2.1 相位雜訊來源..............................................................................................3
(a) 熱雜訊....................................................................................................3
(b) 射彈雜訊................................................................................................3
(c) 閃爍雜訊................................................................................................3
2.2 相位雜訊頻譜..............................................................................................5
2.3 相位雜訊效應..............................................................................................7
2.4 壓抑相位雜訊..............................................................................................8
(a) 使用P 型通道元件...............................................................................8
(b) 使用電容性交互耦合............................................................................9
(c) 使用2nd-harmonic filter.........................................................................9
(d) 採用P-N 互補對稱式電路設計.........................................................10
(e) 源極退化電阻技術..............................................................................10
(f) 差動壓控機制......................................................................................11
(g) 將負阻電路偏壓在電壓權限與電流權限區之間..............................11
(h) 高次諧波共振腔..................................................................................12
(i) 振盪器環型耦合陣列..........................................................................13
(j) 切換式MOS 偏壓...............................................................................14
(k) 使用高Q 值諧振元件.........................................................................15
第三章 對稱尺寸之差動壓控雙閘耦合振盪器......................................................16
3.1 降低相位雜訊方法之優缺點....................................................................16
3.2 雙閘耦合技術............................................................................................16
3.3 對稱最佳尺寸設計....................................................................................18
3.4 差動壓控....................................................................................................21
(a) 小訊號分析..........................................................................................21
(b) 大訊號分析..........................................................................................23
3.5 模擬與量測結果........................................................................................25
第四章 自動轉導匹配之電流再利用振盪器..........................................................29
II
4.1 現有文獻之電流再利用振盪器................................................................29
4.2 自動轉導匹配技術....................................................................................30
4.3 模擬與量測結果........................................................................................34
第五章 結論...............................................................................................................40
附錄一 二次諧波耦合四相位振盪器.......................................................................41
A1.1 四相位振盪器耦合方式............................................................................41
(a) 並聯耦合..............................................................................................41
(b) 串聯耦合..............................................................................................42
(c) 基體耦合..............................................................................................42
(d) 源極退化耦合......................................................................................42
(e) 變壓器耦合..........................................................................................42
(f) 電流源直接交互耦合..........................................................................43
(g) 電流源基體交互耦合..........................................................................43
(h) 二倍頻注入鎖定..................................................................................43
A1.2 二次諧波電容耦合....................................................................................43
A1.3 模擬結果....................................................................................................46
參考文獻......................................................................................................................49
[1] A. Hajimiri and T. H. Lee, “Phase noise in CMOS differential LC oscillators,”
IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1998.
[2] C.-M. Hung and K. K. O. , “A 1.24-GHz monolithic CMOS VCO with phase noise
of 137 dBc/Hz at a 3-MHz offset,” IEEE Microw. Guided Wave Lett., vol. 9, no. 3,
pp. 111–113, Mar. 1999.
[3] Y.-K. Chu and H.-R. Chuang, “A fully integrated 5.8 GHz U-NII band 0.18- _m
CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 7, pp. 287–289,
Jul. 2003.
[4] S.-W. Yoon and E.-C. Park, “5-6 GHz-band GaAs MESFET-based cross-coupled
differential oscillator MMICs with low phase-noise performance,” IEEE Microw.
Wireless Compon. Lett., vol. 11, no. 12, pp.495–497, Dec. 2001.
[5] A. Ismail and A. A. Abidi, “CMOS differential LC oscillator with suppressed
up-converted flicker noise,” in IEEE ISSCC Tech. Dig., Feb.2003, pp. 98–99.
[6] S.J. Yun, C.Y. Cha, H.C. Choi and S.G. Lee,” RF CMOS LC-Oscillator With
Source Damping Resistors” Microwave and Wireless Components Letters, IEEE,
vol. 16, Sep 2006.
[7] B. Soltanian., H. Ainspan, W. Rhee., D. Friedman and P. R. Kinget “An
Ultra-Compact Differentially Tuned 6-GHz CMOS LC-VCO With Dynamic
Common-Mode Feedback” IEEE J. Solid-State Circuits, vol.42, no. 8, Aug 2007.
[8] H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim “A Low Phase-Noise CMOS VCO
With Harmonic Tuned LC Tank” IEEE Tran. Microw. Theory Tech, vol. 54, no.7,
July 2006.
[9] L. Romanò, A. Bonfanti, S. Levantino, C. Samori and A.L. Lacaita “5-GHz
Oscillator Array With Reduced Flicker Up-Conversion in 0.13-μm CMOS”
IEEE J. Solid-State Circuits, vol. 41, no. 11, Nov 2006.
[10] S. Levantino, A. Bonfanti, L. Romano, C. Samori,; A.L. Lacaita “Differential
tuning oscillators with reduced flicker noise upconversion” IEEE ICECS, Dec
2004, pp33-36.
[11] S. K.-J. , S.-B. Shin, H.-C. Choi, and S.-G. Lee, “A 1mWcurrent-reuse CMOS
differential LC-VCO with low phase noise,” in IEEE ISSC Tech. Dig., Feb. 2005,
vol. 1, pp. 540–616.
50
[12] C.L. Yang and Y.C. Chiang, “Low Phase-Noise and Low-Power CMOS VCO
Constructed in Current-Reused Configuration.” in IEEE Microw. Wireless
Compon. Lett., vol.18, no. 2, pp. 136–138, Feb. 2008.
[13] T. K. K. Tsang and M. N. El-Gamal, “A high figure of merit and area efficient
low-voltage(0.7–1 V) 12 GHz CMOS VCO,” in Proc. IEEE Rad. Freq. Integr.
Circuits Symp., 2003, pp. 89–92.
[14] B. Park , S. Lee , S. Choi and S Hong, “A 12-GHz Fully Integrated Cascode
CMOS LC VCO With Q-Enhancement Circuit.” in IEEE Microw. Wireless
Compon. Lett., vol.18, no. 2, pp. 133–135, Feb. 2008.
[15] E. A. M. Klumperink, S. L. J. Gierkink, A. P. van derWel, and B. Nauta,
“Reducing MOSEF 1/f noise and power consumption by switched biasing,”IEEE
J. Solid-State Circuits, vol. 35, no. 7, pp. 994–1001, Jul.2000.
[16] C.Y. Jeong and C. Yoo, “5-GHz Low-Phase Noise CMOS Quadrature VCO” in
IEEE Microw. Wireless Compon. Lett., vol.16, no. 11, pp. 609-611, Nov. 2006.”
[17] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS
LC-oscillator with quadrature outputs,” in IEEE Proc. ISSCC’96 Conf., Feb. 1996,
pp. 392-393.
[18] P. Andreani, A. Bonfanti, L. Romanò, and C. Samori, “Analysis and design of a
1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, pp.
1737-1747, Dec. 2002.
[19] H. R. Kim, C. Y. Cha, S. M. Oh, M. S. Yang, and S. G. Lee, “A very Low-Power
Quadrature VCO with Back-Gate Coupling,” IEEE J. Solid-State Circuits, vol. 39,
pp. 952-955, June 2004.
[20] S. L. J. Gierlkink, S. Levantino, R. C. Frye, and V. Boccuzzi, “A
Low-Phase-Noise 5-GHz CMOS Quadrature VCO Using Superharmonic
Coupling,” IEEE J. Solid-State Circuits, vol. 38, pp. 1148-1154, July 2003.
[21] W.F. Chung and K.K.M. Cheng “A Super-Harmonic Back-Gate Coupled
Quadrature VCO in Standard CMOS Process ”
[22] P. Tortori, D. Guermandi, E. Franchi and A. Gnudi, “Quadrature VCO based on
direct second harmonic locking”, IEEE Proceedings of the 2004 International
Symposium on Circuits and Systems, vol. 1, pp. 169-172, May 2004.
[23] PD. Guermandi, . Tortori, E. Franchi and A. Gnudi, “A 0.83-2.5-GHz
continuously tunable quadrature VCO”, IEEE J. Solid-State Circuits, vol. 40, pp.
51
2620-2627, Dec. 2005.
[24] Wai-Fung Chung, and K. K. M. Cheng, “A Super-Harmonic Back-Gate Coupled
Quadrature VCO in Standard CMOS Process”, 2007 Asia-Pacific Microwave
Conference Proceedings, to be presented, Bangkok, Dec. 2007.
[25] A. Mazzanti and F. Svelto “A 1.8-GHz Injection-Locked Quadrature CMOS
VCO With Low Phase Noise and High Phase Accuracy”, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS, vol. 53, no. 3, pp. 554-560
MAR 2006.
[26] Shailesh S. Rai and Brian P. Otis “A 600 _W BAW-Tuned Quadrature VCO
Using Source Degenerated Coupling” IEEE J. Solid-State Circuits, vol 43, no 1,
pp 300-305, Jan 2008.
[27] C.C. Ho, C.W. Kuo, C.C Hsiao and Y.J. Chan “A 2.4 GHz low phase noise VCO
fabricated by 0.18 /spl mu/m pMOS technologies” VLSI Tech., Systems, and
Applications, 2003 International Symposium, pp. 144-146, Oct 2003.
[28] M. Borremans, B. De Muer, and M. Steyaert, “Phase noise up-conversion
reduction for integrated CMOS VCOs,” Electron. Lett., vol. 36, pp. 857–858,
May 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊