跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴建佑
研究生(外文):Chien-you Lai
論文名稱:射頻功率放大器與積體化平衡-非平衡轉換電路
論文名稱(外文):Radio Frequency Power Amplifier and Integrated Balun Circuitry
指導教授:吳建華吳建華引用關係
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:103
中文關鍵詞:線性化技術主動分相器差動?amp#63841放大器
外文關鍵詞:differential power amplifieractive differential phase splitterlinearization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文主要為差動?amp;#63841;放大器與主動分相器之研究。使用矽鍺異質接面雙載子接面電晶體來實現2.5GHz 線性化差動?amp;#63841;放大器。此電路使用在WiMAX802.16e,其傳輸頻寬為2400MHz 到2700MHz。利用差動技術抑制偶次諧波,並且使用線性化偏壓電路提升線性度。其最大?amp;#63841;輸出22dBm 時有11%的效率,?amp;#63841;增益為(Gain)17dB,輸出三次交互調變點(OIP3)為32dBm,輸出?amp;#63841;在16dBm時,其錯誤向量大小(EVM)值為2.8%。主動分相器研究方面為研製一4-6GHz差動主動分相器,採用疊接以減少米勒效應,shunt peaking 增加頻寬,耦合電容去改善輸出相位和增益不平衡。其有些微?amp;#63841;增益(4dB),輸出與輸入返回損耗小於-10dB,輸出增益不平衡在1dB 以內,輸出相位差在180.1~183.9 度,在4GHz時的最小雜訊指數4.2dB。
A research of differential power amplifier and active differential phase splitter are investigated in this thesis. The 2.5 GHz power amplifier with linearization bias control is realized by a SiGe HBT technology. It is designed to operate in the application of WiMAX 802.16e band, which has the transmit frequency ranging from 2400MHz to 2700MHz. A differential topology is used to suppress even-order harmonics, and a linearization bias circuit is employed to enhance the linearity. The circuit is capable of delivering 22dBm of output power with an 11% power-added efficiency. The power gain is 17dB, and the output third-order intercept point is 32dBm. The maximum average output power for a maximum 2.8% Error Vector Magnitude (EVM) is 16 dBm. A 4-6GHz active differential phase splitter is designed, too. Adopting the cascode topology can greatly reduce the Miller effect, the shunt peaking load enhances the bandwidth, and by the capacitive coupling, the gain and phase imbalances of the output can also be improved. The power gain is 4 dB, the input and output return loss is less than -10 dB, the gain imbalance is less/better than 1 dB, phase difference is between 180.1 to 183.9 and the minimal noise figure happened at the 4GHz frequency is 4.2dB .
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis organization 3
Chapter 2 Principles of Radio Frequency Amplifier Design 4
2.1 Scattering Parameters 5
2.2 Power Gain 6
2.3 Stability 6
2.4 Efficiency of Power Amplifiers 8
2.5 Noise Figure 8
2.6 Conjugate match and power match 10
2.7 1-dB Compression Point 11
2.8 Distortion and Linearity 12
Chapter 3 Design of WiMAX Mobile Power Amplifier 17
3.1 Introduction 17
3.2 Power Amplifier Classification 18
3.3 Power Amplifier Design 29
3.4 Simulation Results 44
3.5 Layout and Fabrication 49
3.6 Measurement Results 51
3.7 Summary 60
Chapter 4 Design of Active Differential Phase Splitter Balun 61
4.1 Introduction 61
4.2 Conventional Passive baluns 64
4.3 Active Balun Design 66
4.4 Simulation Results 71
4.5 Layout and Fabrication 78
4.6 Measurement Results 79
4.7 Summary 84
Chapter 5 Conclusions 85
References

Principles of Radio Frequency Amplifier Design
[1]T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
[2]D. M. Pozar, Microwave and RF wireless systems. New York: John Wiley, 2001.
[3]B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
[4]S. C. Cripps, Advanced techniques in RF power amplifier design. Boston: Artech House, 2002.
[5]C. H. Liu, "Design of Radio Frequency Amplifiers," Microelectronics Department, National Cheng Kung University, 2006.
[6]G. Gonzalez, Microwave transistor amplifiers : analysis and design. Englewood Cliffs, N.J.: Prentice-Hall, 1984.
[7]G. Liu, "Fully Integrated CMOS Power Amplifier," EECS Department, University of California, Berkeley, 2006.
[8]C.-C. Huang, "Differential Radio Frequency Power Amplifier and Single Pole to Six Thru Antenna Switch," EE Department,, National Chung Cheng University, 2007.
[9]"Draft Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Multihop Relay Specification," IEEE Unapproved Draft Std P802.16j/D5, Jun 2008, 2008.
[10]"Draft Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems ((Revision of IEEE Std 802.16-2004 and consolidates material from IEEE Std 802.16e-2005, IEEE Std 802.16-2004/Cor1-2005, IEEE Std 802.16f-2005 and IEEE Std 802.16g-2007)," IEEE Unapproved Draft Std P802.16Rev2/D3 Feb 2008, 2008.
[11]C.-W. Tasi, "Silicon Germanium Bipolar Transistor Radio Frequency Power Amplifier," EE Department,, National Chung Cheng University, 2007.


Design of WiMAX Mobile Power Amplifier
[1]T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
[2]G. Gonzalez, Microwave transistor amplifiers : analysis and design. Englewood Cliffs, N.J.: Prentice-Hall, 1984.
[3]B. Razavi, Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill, 2001.
[4]U. L. Rohde, D. P. Newkirk, and Books24x7 Inc., "RF/microwave circuit design for wireless applications," New York: John Wiley, 2000.
[5]A. Shirvani and B. A. Wooley, Design and control of RF power amplifiers. Boston: Kluwer Academic Publishers, 2003.
[6]D. Cartalade, P. Senn, D. Pache, E. Perea, H. Ghali, and J. M. Fournier, "An integrated 2 GHz 20 dBm 3 V wide band differential power amplifier with microstrip antenna interface," in Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on, 1998, pp. 456-459.
[7]K. C. Tsai, "CMOS Power Amplifiers for Wireless Communications," EECS Department, University of California, Berkeley, 2007.
[8]S. C. Cripps, Advanced techniques in RF power amplifier design. Boston: Artech House, 2002.
[9]X. Zhang, L. E. Larson, and P. Asbeck, Design of linear RF outphasing power amplifiers. Boston: Artech House, 2003.
[10]C. H. Lin, Y. K. Su, Y. Z. Juang, C. F. Chiu, S. J. Chang, J. F. Chen, and C. H. Tu, "The Optimized Geometry of the SiGe HBT Power Cell for 802.11a WLAN Applications," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 49-51, 2007.
[11]G. Huai, Z. Haitao, G. Huinan, Y. Li-Wu, and G. P. Li, "A novel compact composite power cell for high linearity power amplifiers in InGaP HBTs," in Compound Semiconductor Integrated Circuit Symposium, 2004. IEEE, 2004, pp. 45-48.
[12]S. C. Cripps, RF power amplifiers for wireless communications, 2nd ed. Boston: Artech House, 2006.
[13]K. Sangwon and L. Jenshan, "A novel linearizer and a fully integrated CMOS power amplifier," in Microwave Conference, 2006. APMC 2006. Asia-Pacific, 2006, pp. 144-147.
[14]K. Yamauchi, H. Noto, S. Ishizaka, Y. Hamamatsu, M. Nakayama, and Y. Isota, "Series anti-parallel diode linearizer for class-B power amplifiers with a gain expansion," in Microwave Conference, 2006. APMC 2006. Asia-Pacific, 2006, pp. 883-886.
[15]G. Liu, "Fully Integrated CMOS Power Amplifier," EECS Department, University of California, Berkeley, 2006.
[16]D. M. Pozar, Microwave engineering, 3rd ed. Hoboken, NJ: J. Wiley, 2005.
[17]B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
[18]K. K. O, L. Xi, H. Feng-Jung, and W. Foley, "CMOS components for 802.11b wireless LAN applications," in Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE, 2002, pp. 103-106.
[19]K. Yus, W. R. Eisenstadt, and J. R. Paviol, "Design and optimization of a 5 GHz CMOS power amplifier," in Wireless and Microwave Technology, 2005. WAMICON 2005. The 2005 IEEE Annual Conference, 2005, p. 4 pp.


Design of Active Differential Phase Splitter
[1]M. Goldfarb, J. B. Cole, and A. Platzker, "A novel MMIC biphase modulator with variable gain using enhancement-mode FETS suitable for 3 V wireless applications," in Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1994. Digest of Papers., IEEE 1994, 1994, pp. 99-102.
[2]L. Shuenn-Yuh and L. Chun-Cheng, "A 1-V Wideband Low-Power CMOS Active Differential Power Splitter for Wireless Communication," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, pp. 1593-1600, 2007.
[3]H. Kamitsuna and H. Ogawa, "Ultra-wideband MMIC active power splitters with arbitrary phase relationships," Microwave Theory and Techniques, IEEE Transactions on, vol. 41, pp. 1519-1523, 1993.
[4]L. M. Devlin, B. J. Buck, J. C. Clifton, A. W. Dearn, and A. P. O. Long, "A 2.4 GHz single chip transceiver," in Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1993. Digest of Papers., IEEE 1993, 1993, pp. 23-26.
[5]K. Won and K. Youngwoo, "Improved noise analysis of distributed preamplifier with cascode FET cells," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 361-371, 2005.
[6]F. Xiaohua, Z. Heng, and E. Sanchez-Sinencio, "A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA," Solid-State Circuits, IEEE Journal of, vol. 43, pp. 588-599, 2008.
[7]A. A. Abidi, "On the operation of cascode gain stages," Solid-State Circuits, IEEE Journal of, vol. 23, pp. 1434-1437, 1988.
[8]R. C. Jaeger and G. A. Hellwarth, "On the performance of the differential cascode amplifier," Solid-State Circuits, IEEE Journal of, vol. 8, pp. 169-174, 1973.
[9]T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
[10]B. Welch, K. T. Kornegay, P. Hyun-Min, and J. Laskar, "A 20-GHz low-noise amplifier with active balun in a 0.25-/spl mu/m SiGe BICMOS technology," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 2092-2097, 2005.
[11]L. Dong Ho, H. Jeonghu, P. Changkun, and H. Songcheol, "A CMOS Active Balun Using Bond Wire Inductors and a Gain Boosting Technique," Microwave and Wireless Components Letters, IEEE, vol. 17, pp. 676-678, 2007.
[12]M. Rajashekharaiah, P. Upadhyaya, H. Deukhyoun, and E. Chen, "A new 0.25um CMOS on-chip active balun with gain controllability for 5GHz DCR [direct conversion receiver]," in SoutheastCon, 2005. Proceedings. IEEE, 2005, pp. 71-74.
[13]M. Rajashekharaiah, P. Upadhyaya, H. Deukhyoun, and E. Chen, "A new gain controllable on-chip active balun for 5 GHz direct conversion receiver," in Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, 2005, pp. 5115-5118 Vol. 5.
[14]M. Huainan, F. Sher Jiun, L. Fujiang, and H. Nakamura, "Novel active differential phase splitters in RFIC for wireless applications," Microwave Theory and Techniques, IEEE Transactions on, vol. 46, pp. 2597-2603, 1998.
[15]M. Kawashima, T. Nakagawa, and K. Araki, "A Novel Broadband Active Balun," in European Microwave Conference, 2003. 33rd, 2003, pp. 495-498.
[16]J. Lin, C. Zelley, O. Boric-Lubecke, P. Gould, and R. Yan, "A silicon MMIC active balun/buffer amplifier with high linearity and low residual phase noise," in Microwave Symposium Digest., 2000 IEEE MTT-S International, 2000, pp. 1289-1292 vol.3.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top